Improvement of time-of-flight resolution of PET scanner using additional prompt photon

Lech Raczyński

Department of Complex Systems National Centre for Nuclear Research Sołtana 7, 05-400 Świerk

Warszawa, 05.06.2024

Agenda:

- Introduction
- Position resolution improvement algorithm
- Simulation results
- Summary

• Positron Emission Tomography (PET) is a functional imaging method.

annihilation photon

*Figure is adapted from: P. Moskal et al., EJNMMI Phys. 7 (2020) 44.

- Radioactive tracer, emitting positrons, is injected into the patient's body.
- Nowadays, in PET imaging two photons along LOR are considered.
- Reconstruction of annihilation position (green ellipse) is based on time measurement of arrival of the two photons at the detectors (left).

*Figure is adapted from: P. Moskal et al., Science Advance, 2021; 7, eabh4394.

annihilation photon

- In the Positronium Imaging, a special radiotracer that emits an additional prompt photon is required.
- The lifetime of Positronium may be estimated using two back-to-back annihilation photons and prompt photon.

annihilation photon

annihilation photon

- Reconstruction of radiotracer activity using two annihilation photons only (left) and three photons (right).
- Is it possible to improve the position resolution (reduce the ellipse area) ?

Require: $x_1, x_2, t_1, t_2, x_3, y_3, t_3, \mu_{\tau}, \sigma_{\tau}$ 1: $x_a \Leftarrow \frac{c(t_1 - t_2)}{2}$ 2: $t_a \Leftarrow \frac{c(t_1 + t_2) - |x_1 - x_2|}{2c}$

$$\begin{array}{ll} \textbf{Require:} & x_1, x_2, t_1, t_2, x_3, y_3, t_3, \mu_{\tau}, \sigma_{\tau} \\ & 1: \ x_a \Leftarrow \frac{c \left(t_1 - t_2\right)}{2} \\ & 2: \ t_a \Leftarrow \frac{c \left(t_1 + t_2\right) - |x_1 - x_2|}{2c} \\ & 3: \ r_a \Leftarrow \sqrt{(x_a - x_3)^2 + y_3^2} \\ & 4: \ \tau \Leftarrow t_a - t_3 + \frac{r_a}{c} \end{array} \triangleright ca \end{array}$$

 \triangleright calculate distance r_a using annihilation position \triangleright calculate lifetime

$$\begin{array}{ll} \textbf{Require:} & x_1, x_2, t_1, t_2, x_3, y_3, t_3, \mu_{\tau}, \sigma_{\tau} \\ & 1: & x_a \Leftarrow \frac{c \left(t_1 - t_2\right)}{2} \\ & 2: & t_a \Leftarrow \frac{c \left(t_1 + t_2\right) - |x_1 - x_2|}{2c} \\ & 3: & r_a \Leftarrow \sqrt{(x_a - x_3)^2 + y_3^2} \\ & 4: & \tau \Leftarrow t_a - t_3 + \frac{r_a}{c} \end{array} \triangleright ca \end{array}$$

 \triangleright calculate distance r_a using annihilation position \triangleright calculate lifetime

$$\tau \sim \sum_{k=1}^{3} I_k \cdot \text{EMG}\left(\lambda_k, \frac{3}{2}\sigma_t^2\right)$$
$$\tau \sim \mathcal{N}\left(\mu_{\tau}, \sigma_{\tau}^2\right)$$

	Intensity	Mean lifetime
	(<i>I_k</i>)	$(1/\lambda_k)$
Direct	0.65	0.388 ns
p-Ps	0.15	0.125 ns
o-Ps	0.20	2.000 ns

 \triangleright calculate distance r_a using annihilation position \triangleright calculate lifetime

 \triangleright calculate distance r_p using prior distribution τ_{thr} = 0.8 [ns] 1.6 🗂 EMG **GAUSSIAN FIT** 1.4 1.2 ਊ 0.8 0.6 0.4 0.2 0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 0 τ [ns]

*Data is adapted from: P. Moskal et al., Science Advance, 2021; 7, eabh4394.

$$au \sim \mathcal{N}\left(\mu_{ au}, \sigma_{ au}^2\right)$$

12

40 [cm]

- 2-dimensional geometry
- **Detector radius:**
- **Coincidence resolving** time (CRT):
- Radial positions of source [cm]: ۲ 0, 2, 4, 6, 8, 10, 12, 14, 15

Number of events at each position: 100,000 ۲

We simulate only time uncertainty (positions are exact!)

• Coincidence resolving time (CRT): 500 [ps]

	Intensity (I ₄)	Mean lifetime $(1/\lambda_{\nu})$
Direct	0.65	0.388 ns
p-Ps	0.15	0.125 ns
o-Ps	0.20	2.000 ns

$$au \sim \sum_{k=1}^{3} I_k \cdot \operatorname{EMG}\left(\lambda_k, \frac{3}{2}\sigma_t^2\right) \approx \mathcal{N}\left(\mu_{\tau}, \sigma_{\tau}^2\right)$$

Prior gaussian distribution of lifetime:

$$\mu_{\tau} = 250 \text{ ps}$$

$$\sigma_{\tau} = 250 \text{ ps}$$

• Coincidence resolving time (CRT): 500 [ps]

m

Standard deviation along LOR based on prompt photon only:

$$\sigma_p = \sigma_r \frac{\tau_p}{\sqrt{r_p^2 - y_3^2}} \ge 7.5 \text{ cm} \quad (\sigma_r = c \,\sigma_\tau = 7.5 \text{ cm})$$

Standard deviation along LOR based on two annihilation photons only: $\sigma_a = 3.18 \text{ cm}$

• Calculation of CRT for point source in (0,0):

For the smallest σ_p (left figure) we get best possible CRT of about 460 ps (right figure).

CONDITION I		
	YES	77%
$\tau < au_{ m thr}$	NO	23%

CONDITION I		
	YES	77%
$\tau < au_{ m thr}$	NO	23%

CONDITIONS I and II		$\kappa > \kappa_{\rm thr}$	
		YES	NO
	YES	35%	42%
$\tau < au_{ m thr}$	NO	-	23%

- Calculation of CRT for point source in (0,0)
- Take into account that reconstruction with prompt photon may be provided in 35% of cases:

$$\sigma_{a}^{2} = \frac{1}{N_{a}} \sum_{i}^{N_{a}} \left(x_{a}^{i} - \mu \right)^{2}$$
$$\hat{\sigma}^{2} = \frac{1}{\hat{N}} \sum_{i}^{\hat{N}} \left(\hat{x}^{i} - \mu \right)^{2}$$
$$\sigma_{tot}^{2} = \frac{1}{N_{tot}} \left(\sum_{i}^{N_{a}} \left(x_{a}^{i} - \mu \right)^{2} + \sum_{j}^{\hat{N}} \left(\hat{x}^{j} - \mu \right)^{2} \right)$$

where: $N_{tot} = N_a + \hat{N}$ and $\frac{N_a}{N_{tot}} = 0.65, \frac{\hat{N}}{N_{tot}} = 0.35.$

Therefore: $CRT_{tot} \approx \sqrt{0.65 \, (500)^2 + 0.35 \, (466)^2} \approx 489 \text{ ps}$

- Calculation of CRT for point sources in positions from 0 to 15 cm.
- The reference reconstruction with annihilation photons only does not depend on radial position (CRT about 500 ps – see blue curve).
- In the proposed algorithm the worsening of the CRT with increasing radial distance is observed.

Summary

- The algorithm for position reconstruction using two annihilation photons and prompt photon was proposed.
- There are two reasons why information from additional prompt photon does not improve significantly the CRT resolution:
 - 1. The proposed reconstruction with prompt photon may be provided in only 1/3 of cases.
 - 2. The estimate provided by prompt photon alone is smaller than expected (wide distribution of positronium lifetime).
- Future work:
 - Investigation of resolution improvement for CRTs smaller than 500 ps.
 - Consideration of both time and position uncertainties (in presented results positions were exact).

$$x_p = v(r_p) = \begin{cases} x_3 - \sqrt{r_p^2 - y_3^2} & x_3 \ge 0\\ x_3 + \sqrt{r_p^2 - y_3^2} & x_3 < 0 \end{cases}$$

The linear approximation of a function v():

$$x_p \approx x_3 \pm \left(\sqrt{\mu_r^2 - y_3^2} + (r_p - \mu_r) \frac{\partial}{\partial r_p} (v(\mu_r))\right)$$