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Motivations

● Simplify real time network monitoring,
● Curiosity of the deep learning methods performance in 

Intrusion detection systems (IDS).
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# notice_ssh_guesser.zeek

@load protocols/ssh/detect-bruteforcing

redef SSH::guessing_timeout = 30 mins;
redef SSH::password_guesses_limit = 10;

hook Notice::policy(n: Notice::Info)
    {
        if ( n$note == SSH::Password_Guessing )
            add n$actions[Notice::ACTION_LOG];
    }

source: https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all&isCpeNameSearch=false

"A weakness in the computational 
logic (e.g., code) found in 
software and hardware 

components that, when exploited, 
results in a negative impact to 

confidentiality, integrity, or 
availability.”
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Types of classification

flows classification
● based on flow features
● most popular solution

windows classification
● based on packets
● packets can be mixed within 

many flows
● real time monitoring

packets classification
● based on packets
● packets can be mixed within 

many flows
● real time monitoring
● the chosen solution

Features that describe 
specific flow (e.g. number 
of packets, average size 

of packet in flow).
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Attack types in CIC IDS 2017

4

● over 50 GB of raw traffic data
● 5 days
● 15 types of attacks + normal traffic
● files

○ *.pcap - raw traffic data
○ *.csv - flow features + labels

● dataset split:
○ training set: 50%,
○ validation set: 10%,
○ test set: 40%.

● Benign packets in 
○ train dataset: 88.96%
○ validation dataset: 89.04%
○ test dataset: 90.21%
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Data preprocessing pipeline
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Related works using CIC-IDS-2017 dataset

*references can be found on the last slide
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Packets preprocessing
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Packets windows

● Examples of windows that contain packets marked as an attack.

● Example of benign window.

● ~20% of windows contain packets that are marked as an 
attack.

● Packets marked as an attack account ~10% of the dataset.

● Shorter packets are filled with zeros.
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● Model should not be adjusted to the specific data.
● Most of the other solutions assume cut out this particular parts of packet header.
● Randomization is done within each packets window - randomized replacement.
● Example below shows:

○ the window of a packet length,
○ the packet with TCP protocol (the most common).
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Packets randomization
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Windows shape

● The maximum lengths of the packets and windows were limited by hardware.
● The lengths of the packets were selected based on the histogram of packet lengths:

○ the final selected value was 350 bytes.
● The length of windows were selected experimentally:

○ the final selected value was 150 packets.
● The FCNN receives a 1D input - window of 1 packet.
● We plan to implement dynamic window sizing in batches in the future.
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Training and labeling

● Many types of deep learning algorithms were tested and developed.
● Four types of architectures were chosen as promising:

○ fully connected neural network (FCNN),
○ CNN-LSTM neural network,
○ CNN neural network,
○ pretrained EfficientNet-B0 neural network.

● Dataset balancing was tested:
○ oversampling windows with attack packets,
○ attack packets oversampling (FCNN).

● Two types of labelling were tested:
○ response from target to attacker labeled as an attack (Fig. 1),
○ only movement from attacker labelled as an attack (Fig. 2).

● Four cost functions were tested:
○ binary crossentropy (chosen),
○ focal loss,
○ dice loss,
○ IoU loss.

       Figure 1                      Figure 2
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Deep learning architectures

● Fully connected neural network (FCNN):
○ input 1D: 1 ⨉ 350+1,
○ output: 1,
○ initial learning rate: 0.001,
○ optimizer: Adam,
○ batch size: 8096.

● Convolutional neural network (CNN):
○ input 2D: 150 ⨉ 350+1,
○ output: 150,
○ initial learning rate: 0.001
○ optimizer: Adam,
○ large convolutional filters,
○ batch size: 64.
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Deep learning architectures

● Hybrid neural network (CNN-LSTM):
○ input 2D: 150 ⨉ 350+1,
○ output: 150,
○ initial learning rate: 0.0005,
○ optimizer: Adam,
○ batch size: 64.

● EfficientNet based neural network:
○ input 2D: 150 ⨉ 350+1,
○ output: 150,
○ initial learning rate: 0.001,
○ optimizer: Adam,
○ pretrained on imagenet,
○ batch size: 16.

* EfficientNet Architecture Source: https://www.researchgate.net/figure/Architecture-of-EfficientNet-B0-with-MBConv-as-Basic-building-blocks_fig4_344410350
* ImageNet:  https://www.image-net.org/

https://www.researchgate.net/figure/Architecture-of-EfficientNet-B0-with-MBConv-as-Basic-building-blocks_fig4_344410350
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Results - Fully connected neural network

● Results on the test dataset

● Best results:

○ Binary Accuracy: 0.9993

○ Precision: 0.9941

○ Recall: 0.9837
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Results - Fully connected neural network

● Training loss history plot:
○ from the model with the 

highest accuracy,
○ epoch with best 

validation accuracy: 24.

● Saliency map 
○ averaged over the

 entire batch.

Saliency map is used to 
identify features that 
influence the model's 

predictions. Color intensity 
is proportional to its 

importance.

training history

ac
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Results - Convolutional neural network

● Results on the test dataset

● Best results:

○ Binary Accuracy: 0.9877

○ Precision: 0.9466

○ Recall: 0.9265
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Results - Convolutional neural network

● Training history plot:
○ from the model with the highest accuracy,
○ epoch with best validation accuracy: 29.

training history

● Saliency map:
○ averaged over the entire batch.

saliency map
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Results - Conv1D+LSTM neural network

● Results on the test dataset

● Best results:

○ Binary Accuracy: 0.9885

○ Precision: 0.9518

○ Recall: 0.9301
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Results - CNN+LSTM neural network

● Training history plot:
○ from the model with the highest accuracy,
○ epoch with best validation accuracy: 18.

training history

● Saliency map
○ averaged over the entire batch.

saliency map
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Results - EfficientNet

● Results on the test dataset

● Best results:

○ Binary Accuracy: 0.9917

○ Precision: 0.9561

○ Recall: 0.9588
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Results - Convolutional neural network

● Training history plot:
○ from the model with the highest accuracy,
○ epoch with best validation accuracy: 35,
○ model should be trained on more epochs.

● Saliency map
○ averaged over the entire batch.

training history

saliency map
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Summary - the results comparison
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Summary and outlook

Summary:
● FCNN model:

○ allows to obtain best metrics values:
○ results are comparable or better than the most of flows based solution,
○ model strongly based on the headers of the packets,
○ model can have difficulties to work with other datasets.

● Window based models:
○ obtained worse metrics values than FCNN,
○ pretrained EfficientNet provides best results,
○ labeling only forward networking significantly impedes  to find features in windows,
○ models take into account most of the window: both header and payload,
○ models potentially can work with other datasets.

Outlook:
● Tune models hyperparameters with KerasTuner.
● Add dynamic windows shape.
● Check how LSTM and CNN would work with pretrained image-data.
● Introduce a way to classificate type of attack.
● Create Random Forest model that combine FCNN with 2D-window based methods. 
● Verify how models predict data on other datasets and with on-line data.
● Perform models fine-tuning on other datasets
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Aleksander Ogonowski, Michał Żebrowski, Arkadiusz Ćwiek
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https://ai.ncbj.gov.pl

Thanks!
EuroCC2 project enables us to demonstrate usage of presented models on yours data!

Interested?
Mail or talk to us and ask about Proof-of-Concept possibilities.
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