WMLQ2024 04/06/2024

Deep Generative Models for Particle Simulations at ALICE, CERN

Patryk Będkowski*, Karol Rogoziński*, Mikołaj Kita*

Jan Dubiński, Tomasz Trzciński, Przemysław Rokita, Kamil Deja

Content

- 1. Introduction to Zero Degree Calorimeter fast simulations
- 2. Generative Adversarial Networks
- 3. Autoencoders
- 4. Diffusion Models
- 5. Summary

Introduction to Zero Degree Calorimeter (1/2)

The Zero Degree Calorimeter is one of the components of the A Large Ion Collider Experiment (ALICE) detector, part of the Large Hadron Collider.

The ZDC calorimeter records the energy of the 'observer' particles through the phenomenon of Cherenkov radiation.

HC beam pipes

Introduction to Zero Degree Calorimeter (2/2)

The ZDC calorimeter consists of two devices named Neutron and Proton,

The principle of operation is based on the detection of photons produced by particles falling into optical fibres,

Photodetectors record the energy of photons in the form of one-dimensional images,

The recorded image is produced in response to a particle described by 9 conditional attributes (Mass, energy, charge, 3 position components and 3 momentum components of the particle during the collision).

ZDC Neutron

How we apply Deep Generative models in ZDC

- Current simulations based on Monte Carlo techniques represent a high computational effort,
- Generative machine learning models allow the simulation of images formed by collisions of particles omitting the complex physical interactions between them.

Purpose of work: Extend standard GAN architecture with regularization to perform simulations of the ZDC Proton calorimeter.

Validation - calculation of channels

Improving Generative Adversarial Networks

Generative Adversarial Network

Diversity regularization - observation

Problem: Vector *c* corresponds to diverse set of images in the dataset.

Diversity regularization

Problem: Vector *c* corresponds to diverse set of images in the dataset. Trained standard GAN generates consistent images!

SDI-GAN – introduces diversity measure

SDI-GAN – introduces diversity measure

Variance across images for *c*:

Diversity regularization – training

$$L(G,D) = L_{adv}(G,D) + \lambda_{div}L_{div}(G)$$

$$L_{div}(G) = f_{div}(C) * \left(\frac{d_I(G(C, z_1), G(C, z_2))}{d_Z(z_1, z_2)}\right)^{-1}$$

Diversity regularization – training

$$L(G,D) = L_{adv}(G,D) + \lambda_{div}L_{div}(G)$$

$$L_{div}(G) = f_{div}(C) * \left(\frac{d_I(G(C, z_1), G(C, z_2))}{d_Z(z_1, z_2)}\right)^{-1}$$

Diversity regularization – training

$$L(G,D) = L_{adv}(G,D) + \lambda_{div}L_{div}(G)$$

$$L_{div}(G) = f_{div}(c) * \left(\frac{d_I(G(c, z_1), G(c, z_2))}{d_Z(z_1, z_2)}\right)^{-1}$$

Intensity regularization

Problem: Wide sum of pixel values across images within the dataset.

Auxiliary regressor

Idea: We can control geometric properties of the generated image.

$$L_{aux}(G) = \frac{1}{N} \sum_{i=1}^{N} \left[\left(\hat{k}_i - k_i \right)^2 + \left(\hat{l}_i - l_i \right)^2 \right]$$

Auxiliary regressor

Idea: We can control geometric properties of the generated image.

- The GAN repeatedly generates consistent images,
- SDI-GAN improves on delivering diverse results where needed,
- Intensity regularization helps to produce images with sum of pixel close to original,
- Applying auxiliary regressor ensures the preservation of geometric properties.

- The GAN has visible problems with underproducing high-energy responses.
- Implementation of additional regularizations and auxiliary regressor positively influence better alignment to true distribution, but tends to oversample high-energy responses.

Summary

Model	WS MEAN↓	Std dev.
GAN	2.4752	1.6843
SDI-GAN	2.3571	1.6000
SDI-GAN + reg.	2.2916	1.8210
SDI-GAN + reg. + aux. reg.	2.0777	1.6381

Main takeways:

- Generative machine learning models offer cost-effective alternative to Monte-Carlo based simulations,
- By applying multiple regularizations we can tune the model to the specific data characteristics.

Improving Variational Autoencoders

VAE in nutshell

But which generative AI should we choose?

CVAE

But which generative AI should we choose?

CVAE

BEST FRIEND -> auxiliary regressor 6

Control over generated data properties

Control over generated data properties

CorrVAE

Our solution

Our solution

Our solution

Generation comparison

.

Comparison of metrics

	MSE V	Nasserstein
CorrVAE	1.03	16.15
CorrVAE + postproc	1.18	3.83
CVAE	1.02	6.35
CGAN	2.96	8.27
CGAN + reg + postproc	2.98	5.15

.

Traversing the latent space

Improving Diffusion Models

Diffusion-based generative models

Scientists walk around Large Hadron Collider at CERN Disney pixar movie poster about a happy small particle flying around at CERN

Attempt to use diffusion models for ZDC simulations

- •Diffusion models have many advantages, such as the high quality of the content generated and a high degree of flexibility, allowing them to be used in many fields
- •They also have disadvantages, such as the need for a large amount of training data and the need for high computing power
- •Following diffusion models were tested in our study: unconditional, conditional and latent diffusion models

Diffusion models - diffusion process

The diffusion process (**forward process**) involves adding Gaussian noise to the image at each step:

The reverse diffusion process works on the same principle in reverse:

DDPM sampling method

DDPM sampling method removes estimated noise at each step:

P. Będkowski, K. Rogoziński, M. Kita WMLQ2024

Source: J. Ho, A. Jain, and P. Abbeel, "Denoising diffusion probabilistic models"

DDIM sampling method

DDIM allows for the omission of intermediate steps in the denoising process, enabling faster generation of samples:

P. Będkowski, K. Rogoziński, M. Kita WMLQ2024

Source: J. Song, C. Meng, and S. Ermon, "Denoising diffusion implicit models"

Unconditional diffusion model - results

Model	Method	# inference steps	Mean WS	ch1	ch2	ch3	ch4	ch5	Time [min]
Unconditional	DDIM	10	20.7	11.3	13.8	12.8	13.6	52.0	3
diffusion	DDIM	20	8.1	6.3	4.7	5.1	4.4	20.0	6
model	DDIM	50	50.5	32.7	27.5	34.5	31.4	126.4	12
Unconditional	DDPM	20	32.4	19.5	21.1	20.7	21.7	79.3	3
diffusion	DDPM	250	2.3	2.4	2.9	2.3	1.2	2.6	59
model	DDPM	500	3.9	4.1	1.2	2.6	2.5	9.1	119
GAN	-	-	8.3	4.4	5.5	7.3	9.1	15	<1
VAE	-	-	6.4	4.6	5.2	4.2	9.1	13.7	<1
Monte Carlo	-	-	-	-	-	-	-	-	90

The unconditional diffusion model achieves significantly better results, but needs more time to generate a set of answers.

Conditional diffusion model - results

Model	Metgod	# inference steps	Mean WS	ch1	ch2	ch3	ch4	ch5	Time [min]
	DDIM	20	8.1	6.3	4.7	5.1	4.4	20.0	7
Conditional	DDIM	50	6.39	3.89	3.38	3.89	3.01	17.76	15
	DDIM	100	21.6	14	13.1	14	12.7	54.3	30
Conditional	DDPM	50	7.2	4.6	4.8	4.6	5.1	16.9	15
	DDPM	500	1.2	0.9	1.1	0.8	1.0	2.1	109
	DDPM	1000	1.8	1.7	1.8	1.9	1.0	2.4	218
GAN	-	-	8.3	4.4	5.5	7.3	9.1	15	<1
VAE	-	-	6.4	4.6	5.2	4.2	9.1	13.7	<1
Monte Carlo	-	-	-	-	-	-	-	-	90

The conditional diffusion model with cross-attention achieves the best results of the models tested.

P. Będkowski, K. Rogoziński, M. Kita WMLQ2024

Latent Diffusion Models

Conditional VAE - results

Model	Mean WS	ch1	ch2	ch3	ch4	ch5	Time [min]
Conditional VAE	23.92	13.1	16.8	13.4	18.5	18.5	<1

Conditional VAE generation

Latent Diffusion Model improves generation of high channel values in VAE

Latent Diffusion Model - results

Model	Method	# inference steps	Mean WS	ch1	ch2	ch3	ch4	ch5	Time [min]
CondVAE	-	-	23.92	13.1	16.8	13.4	18.5	18.5	<1
	DDIM	5	13.5	5.2	9.6	9.5	11.3	30.8	<1
LDIVI	DDIM	10	14.3	6.7	10.2	10.1	11.9	32.8	<1
	DDPM	5	12.6	5.8	8.8	9.1	10.5	28.6	<1
LDIVI	DDPM	10	13.5	6.4	9.5	9.5	11.3	30.8	<1
GAN	-	-	8.3	4.4	5.5	7.3	9.1	15	<1
VAE	-	-	6.4	4.6	5.2	4.2	9.1	13.7	<1
Monte Carlo	-	-	-	-	-	-	-	-	90

Best results comparison

Model	Mean WS	ch1	ch2	ch3	ch4	ch5	Time [min]
LDM	12.6	5.8	8.8	9.1	10.5	28.6	<1
GAN	8.3	4.4	5.5	7.3	9.1	15	<1
VAE	6.4	4.6	5.2	4.2	9.1	13.7	<1
Unconditional diffusion model	2.3	2.4	2.9	2.3	1.2	2.6	59
Conditional diffusion model	1.2	0.9	1.1	0.8	1.0	2.1	109

Latent Diffusion Model shows significant potential due to its rapid generation time. However, it still requires more development work to reach the performance benchmarks set by other models.

Summary

We create fast simulation of the Zero Degree Calorimeter with generative ML

We increase the fidelity of GAN-based simulation with loss regularization for output diversity and intensity

Summary

For VAE models we achieve precise control over

the properties of the generated output thanks to separate latent spaces

Summary

We explore the trade-offs between the simulation quality and efficiency for various diffusion models:

Latent Diffusion Models match the speed of VAEs and GANs

Deep Generative Models for Particle Simulations at ALICE, CERN

Patryk Bedkowski*, Karol Rogoziński*, Mikołaj Kita*

Jan Dubiński, Tomasz Trzciński, Przemysław Rokita, Kamil Deja

Acknowledgments: This research was funded by National Science Centre, Poland grants: 2020/39/O/ST6/01478 and 2022/45/B/ST6/02817. This research was supported in part by PLGrid Infrastructure grants: PLG/2023/016393, PLG/2023/016361, PLG/2023/016278.