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> Machine learning in Medicine: two famous examples
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Taken from: Abramson,... & Jumper (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3.

Nature, 1-3.
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Taken from: Ktena, ... & Gowal (2024). Generative models improve fairness of medical classifiers under distribution shifts.
Nature Medicine, 1-8.



Machine learning in Medicine beyond AlphaFold and image classifiers
'Omics data’ (or high-throughput data)

O. Rolfsson and B. O. Palsson Thoughts & Opinion ®

Decoding the jargon of bottom-up
metabolic systems biology

Ottar Rolfsson”?* and Bernhard O. Palsson” Bioessays 37: 588-591, © 2015

"High throughput data have changed biochemical research such that new
skillsets are now required of the modern 21st century life scientist.

Biochemical research can now be carried out in a manner that is outside the
scope of traditional biochemistry and biology methods, and more to the taste
of computer scientists and statisticians.

Indeed, bioinformatics has emerged to specifically deal with the manipulation
and analysis of these data."



> Machine learning in Medicine beyond AlphaFold and image classifiers
P Digression: What are 'omics' data and in particular, transcriptomics (gene expression) data?

Gene activity, how it is created and how it fuels the diverse aspects of a cell is at the core of understanding a biological cell
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Machine learning in Medicine beyond AlphaFold and image classifiers

'Omics data’' (or high-throughput data)

.. one strategy: adapting image classifiers for
analyzing gene expression data

M hard to interpret the results (features are
not linked to biology)

B not (yet) very successful

In conclusion, as we stand on the cusp of this analytical
revolution in genomics, it is imperative to embrace these novel
methodologies. Their potential to revolutionize our comprehen-
sion of biology, combined with profound clinical implications,
cements their role as indispensable instruments in our endeavor
to decode the intricacies of life.

Taken from: Sharma, ... & Tsunoda (2024). Advances in Al and

machine learning for predictive medicine. Journal of Human
Genetics, 1-11.
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Machine learning in Medicine beyond AlphaFold and image classifiers
'Omics data’ (or high-throughput data)

.... another strategy: dedicated ML
devices extracting disease-related
genes

Machine learning-
based models were able to incorporate colonic gene expression and clinical characteristics to predict
outcomes with high accuracy. Models showed an area under the receiver operating characteristic
curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential
prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene
differential analysis but were found to have strong contributions to predictive models.

B substantial variation with
method choices

B typically very small datasets

Clinical variables with gene expression
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ileum samples were used as controls.

After applying quality control, 56 CD patients with colon samples and 56 CD patients with ileum samples were
included in the study cohort, while 46 non-IBD patients with colon samples and 46 non-IBD patients with

Taken from: Chen, ... & Sheikh (2024). Linking gene expression to clinical outcomes in pediatric Crohn’s disease
using machine learning. Scientific Reports, 14(1), 2667.




Machine learning in Medicine beyond AIphaFoId and image classmers

'Omics data’ (or high-throughput data)

.. what about simpler organisms?

High Quality RNAseq Data

Samples (100s) iModulons (10s) Samples (100s)
- y = W ¢ g {EE_ B . Curation assigns:
3 § + ¢ = A ¢ :
g8 .X.$ g /j M/ x g ¢|  *Function
= = R dxdra o
= ¢ Bl o War - Reguiator (TF)
L — Target T |Modulon Adrvlty
J

Gene expression data

from a bacterium,
Escherichia coli

Independently Modulated Gene Sets (iModulons)

iModulonDB: Curated Interactive Dashboards

MalT iModulon

FUNCTION
Maltose catabolism

CATEGORY

Carbon Sources ——bL-0 _=n

Genes

;h&r,qﬂ' ,g; ;ﬁ.du.;b

REGULATOR
MalT

Activity

: I PR l.._n.il,'_nll,. S
CPPT OO D TR T

Regulation

J [ Poovoimsgns

(Characterize Genes

- Hypothetical
functions
- Putative regulators

N J

~

(Explain Activity

« Novel relationships
- Hypothetical
mechanisms

o J/

= »
Discover Regulation
@ - Regulator discovery

“) « Improved regulon
annotations
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Taken from:

Sastry,... & Palsson (2019). The Escherichia coli
transcriptome mostly consists of
independently regulated modules. Nat.
Commun. 10, 1-14

https://systemsbiology.ucsd.edu/imodulons



Machine learning in Medicine beyond AIphaFoId and |mage classifiers

'Omics data’ (or high-throughput data) Gene expression data

.. what about simpler organisms? from a bacterium,
Escherichia coli

M iModulon: gene group identified from patterns in
transciptomic datasets

B Regulon: gene group regulated by the same transcriptional
regulator (experimentally verified)

Taken from: www.cdc.gov/ecoli/

B Around 66% of the identified iModulons have significant
overlaps with Regulons

B Reasons or biological significance of discrepancies are

Taken from:
unclear

Sastry,... & Palsson (2019). The Escherichia coli
transcriptome mostly consists of
independently regulated modules. Nat.
Commun. 10, 1-14

B No predictive framework

https://systemsbiology.ucsd.edu/imodulons



> Machine learning in Medicine beyond AlphaFold and image classifiers
'Omics data’' (or high-throughput data)

Tabular to image conversion
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B Current status: gene expression patterns (so far) cannot be simulated, explained or predicted

B We believe that this is due to the intrinsic complexity of biological systems



> Biological complexity in the context of modeling and algorithms

Biology operates via the interplay of analog (rather gradual) and digital (discrete, symbolic) information.
"The observation | wish to make is this: processes

which go through the nervous system may, as | Examples
pointed out before, change their character from

digital to analog, and back to digital, etc.,
repeatedly."”

B Chromatin
organization

H Ultrasensitivity in
signaling

von Neumann, J. (1958) The Computer and the Brain. Yale University Press.

M Spikes in neurons
"In the future attention undoubtedly will be centered on the N..

genome, and with greater appreciation of its significance as a
highly sensitive organ of the cell, monitoring genomic activities
and correcting common errors, sensing the unusual and
unexpected events, and responding to them, often by

restructuring the genome."
McClintock, B. (1983) Nobel prize lecture

Mathematical and computational approaches (modeling, data analysis, machine learning)
are challenged by this interplay of digital and analog information.




> Biological complexity in the context of modeling and algorithms

Gene expression data ,
from a bacterium,
Escherichia coli

Taken from: www.cdc.gov/ecoli/

Key question:

Do patterns in the gene expression data reflect the interplay of analog and digital control?




> Digital and analog control in bacterial gene regulation
P Representations of the biological system /

circular chromosome
G=(V,FE),
v;,v; € V vertices (genes),
(vi,vj) € E directed edges,
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> Digital and analog control in bacterial gene regulation

P> Representations of the biological system /
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Figure taken from: imsb.au.dk/~raybrown/nucleic/




> Digital and analog control in bacterial gene regulation

P> Representations of the biological system /
N\
digital | | — analog
7
/ AN
transcriptional regulatory network circular chromosome

Side remark: Additional complexity

The gene regulatory
network is not
acting alone

—» Theory of
interdependent
networks

Klosik, Grimbs, Bornholdt and Hutt (2017).
Nature Communications 8, 534.

Grimbs, Klosik, Bornholdt, Hiitt (2019).
PLoS Computational Biology, 15, e1006962.




> Digital and analog control in bacterial gene regulation
P Evidence 1: Agreement of gene expression changes with network and chromosome
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Marr, Geertz, Hiitt, Muskhelishvili (2008) BMC Systems Biology 2, 18



> Digital and analog control in bacterial gene regulation
P Evidence 1: Agreement of gene expression changes with network and chromosome

Gl — (V/, El),
V' C V differentially expressed genes

comparison of

expression E’ C E all edges in G among vertices in V'
changes

between v; € V'|k(v;) >0

high and R = L. [k (v:) }|, k(v;) degree of node v;

low supercoiling Vi

z-score (with respect to random vertex sets)

comparison R — (R=m)
with TRN C = digital control strength
O-R(ran)
analog control strength: same, but for a network where
genes are connected when the (1D) distance is smaller
than a threshold
effective
TRN

Marr, Geertz, Hiitt, Muskhelishvili (2008) BMC Systems Biology 2, 18



> Digital and analog control in bacterial gene regulation
P Evidence 1: Agreement of gene expression changes with network and chromosome
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> Digital and analog control in bacterial gene regulation
P Evidence 1: Agreement of gene expression changes with network and chromosome

104 RNA-Seq data sets for various experimental conditions ClmbS I
—> computation of differentially expressed genes

—> digital and analog control strengths
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> Digital and analog control in bacterial gene regulation

P Evidence 2: Machine learning classification of gene expression data

Decision Trees
Features
Position relative to Ori
crp binding sites density
hns binding sites density
fis binding sites density
gene proximity network neighbors
TRN regulators
hns is direct regulator
fis is direct regulator

crp is direct regulator

digital vs. analog
unclear

analog

analog

analog

analog

digital

digital

digital

digital

unpacking some 'jargon'

crp, hns, fis are hubs of the
transcriptional regulatory
network; they also bind at
other places of the
chromosome and influence
3D organization

Ori is shorthand for 'origin
of replication’, i.e., the
point, the chromosome is
duplicated for cell division.



> Digital and analog control in bacterial gene regulation
P Evidence 2: Machine learning classification of gene expression data
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Kosmidis, Jablonski, Muskhelishvili, Hitt (2020) npj Systems Biology and Applications 6:5



> Digital and analog control in bacterial gene regulation
P Evidence 2: Machine learning classification of gene expression data

correlation to analog control correlation to digital control
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> Digital and analog control in bacterial gene regulation
P Evidence 3: 'Wiring economy' in the transcriptional regulatory network

Motivated by
Chen, Y., Wang, S., Hilgetag, C. C. & Zhou, C. Trade-off between multiple constraints enables simultaneous formation of

modules and hubs in neural systems. PLoS Comput. Biol. 9, €1002937 (2013).

"Growing evidence shows that neural networks are results from a trade-off between
physical cost and functional value of the topology."

"Two obvious but apparently contradictory constraints are low wiring cost and high
processing efficiency, characterized by short overall wiring length and a small average
number of processing steps, respectively."



> Digital and analog control in bacterial gene regulation
P Evidence 3: 'Wiring economy' in the transcriptional regulatory network
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Cakir, Lesne, Hutt (2021). npj Systems Biology and Applications, 7, 49.



> Digital and analog control in bacterial gene regulation
P Evidence 3: 'Wiring economy' in the transcriptional regulatory network
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network ("hardware’
implementing regulation):

e efficient processing (lower-
than-random average number
of processing steps)

e very efficient wiring (much
lower-than-random total
wiring length)



> Digital and analog control in bacterial gene regulation
P Evidence 3: 'Wiring economy' in the transcriptional regulatory network

.... back to the iModulon concept for a moment

Z-Scores
B iModulon: gene group identified from patterns in Total Wiring Length of Subgraphs

transciptomic datasets

TRN CRN

2
B Regulon: gene group regulated by the same transcriptional
regulator (experimentally verified)

B Around 66% of the identified iModulons have significant
overlaps with Regulons 0

B Reasons or biological significance of discrepancies are 1
unclear

e Regulatory perspective (TRN): iModulons: unspecific (low
'wiring economy') in their spatial organization; Regulons:

spatially organized. A7

e Coregulation (CRN; capacity to create coherent activity): both
units are spatially tightly clustered

Cakir, Lesne, Hutt (2021). npj Systems Biology and Applications, 7, 49.



> Digital and analog control in human diseases
P> Agreement of transcriptome data with a given biological network
Pediatric Crohn disease patients exhibit specific ileal
transcriptome and microbiome signature

Haberman et al.
J Clin Invest. 2014;124(8):3617-3633. d0i:10.1172/1C175436.

Some features of the data set

B treatment-naive pediatric patients
m Crohn's disease (CD)
® ulcerative colitis (UC)

m no inflammatory bowel disease (notIBD)

B 321 samples (with an age range from 2 to 17 years)

B gene expression measured via RNA-Seq



> Digital and analog control in human diseases
P> Agreement of transcriptome data with a given biological network
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Here: genome-scale metabolic network
Knecht, Fretter, Rosenstiel, Krawczak and Hitt (2016) Scientific Reports 6, 32584.



> Digital and analog control in human diseases
P> Agreement of transcriptome data with a given biological network
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> Digital and analog control in human diseases
P> Agreement of transcriptome data with a given biological network
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M currently we do not
understand these disease
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Cakir and Hitt (2024) In preparation.



> Digital and analog control in human diseases
P Interpretation of disease-associated SNPs via analog information

Concept of analog Hcle0s Data resources
information ‘
(/"f! Chromosome TAD data
Topologically : Rao et al. (2014) A 3D map of the
associating ’ human genome at kilobase
domains e SOV resolution reveals principles of
P Bt chromatin looping. Cell 159,
(TADs) 1665—1680.
| Chromosome |
= TAD (§TAD (3 TAD (KTAD (3 TAD ({ TAD (§ TAD ({TAD (3~ , :
:_( 4 B ; 8 ({\ 8 G_G_ Disease-associated SNPs

------- ,,1 from GWAS catalog

Catalog

: Statistical question

Are there diseases, for
which the disease-
associated SNPs are
significantly often
Boundary : located in TAD

___________________________________________________

ies?
Taken from: Krijger and de Laat (2016) Nat. Rev. Mol. Cell. Biol. 17, 771. boundaries:

Ny
Architectural
loops



> Digital and analog control in human diseases
P Interpretation of disease-associated SNPs via analog information

enrichment of SNPs in TAD borders
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> Conclusion

B Omics (high-throughput) data are transformative for biology and medicine
B So far, machine learning has had limited success in interpreting omics data

B The reason might be the interplay of digital and analog information
at work in biological systems

B This interplay is relevant across all aspects of biology — from
bacteria to human diseases

B Network science is a useful toolbox to make this
interplay visible in omics data




