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What do we do?



Zero Degree Calorimeter (ZDC)

• ALICE experiment.

• Detects the energy of the spectator nucleons in order to 
determine the overlap region in nucleus-nucleus collisions.

• Simulated using Monte Carlo approach.
o Computationally expensive method!

• Neutron detector: 44x44 silica optical fibers grid.
o Detection of Cherenkov light produced by charged particles in the fibers.

• Detector responses have 2-dimensional structure...

• ...making their simulation a perfect task for generative neural 
networks!



• Using a surrogate of the whole mathematical model or its part.
o The most computationally-intensive part -> a faster surrogate.

• Fast simulations at CERN.
o Existing approaches at different experiments.

o VAEs, GANs, NFs, Diffusion.

• There's still a gap to fill!
o Research done mostly on other experiment's calorimeters.

Fast simulations



Dataset

• Tabular data + images.
o 306780 samples.

• Simulation input – primary particle.
o 9 features: energy, momenta (3d), primary vertex position (3d), mass, charge.

• Simulation output – detector response.
o Only neutron detector.

o Detector response treated as an image.

o Responses with 10 and more photons.

• Diversity of detector responses.

http://www.agh.edu.pl/


Diverse results from the same parameters

http://www.agh.edu.pl/


Many samples... yet sparse data?



Oh no... imbalanced data!

http://www.agh.edu.pl/


And... we have our challenge!



Chosen generative frameworks



How do we measure the performance?

• Pixel-to-pixel comparison.
o Can help... but not as a primary metric.

• Comparison of distributions of results.
o ...but which distributions?

• One image -> 5 channels.
o Wasserstein distance.

o MAE.

• RMSE.

• Generation time.

http://www.agh.edu.pl/


Autoencoders

• Conditional Variational Autoencoders.

• Autoencoders with noise generator.

• Supervised autoencoders.

Architecture CNN ViT MLP-Mixer

Metric Wasserstein MAE RMSE Wasserstein MAE RMSE Wasserstein MAE RMSE

VAE 11.52 17.76 50.38 11.90 18.05 49.48 12.22 18.00 49.51

Supervised 
AE

23.71 31.90 72.32 20.43 30.60 74.64 17.08 26.90 104.83

AE + 
Sinkhorn NG

26.53 29.07 66.16 11.34 15.88 44.17 x x x

AE + MSE NG 37.56 39.32 92.28 11.19 15.47 43.49 x x x

http://www.agh.edu.pl/


Generative Adversarial Networks (GANs)

• Conditional GANs.

• SDI-GAN.

• Postprocessing + additional loss.

• Comparison of different GAN models:

Model Wasserstein MAE RMSE

GAN 7.09 25.65 104.60

GAN + postprocessing 5.70 24.71 100.98

GAN + l2 loss 6.44 27.37 109.24

GAN + l2 loss + 
postprocessing

6.07 26.78 107.07

SDI-GAN 6.57 27.01 107.82

SDI-GAN + 
postprocessing

6.36 26.58 105.94

http://www.agh.edu.pl/


Vector Quantization – the more, not always the better!

• VQ-VAE - discrete latent representations.
o Choosing a nearest neighbor from the codebook.

• VQ-GAN - VQ-based generator.

• Medium-sized VQ-VAE achieves the best results in terms of reconstruction:

Model size Wasserstein MAE RMSE

0.25M 11.54 12.96 38.46

1M 9.86 11.84 37.22

4M 11.73 13.78 43.54

13M 11.40 12.87 37.90

52M 12.12 13.73 39.74

http://www.agh.edu.pl/


Normalizing flows

• CaloFlow-like approach.
o Two models: one for the number of photons and one for the final result.

o Trained independently.

• Bayesian network for the number of photons, flow as the main model.

• Adding noise to pixel values for training, removing the noise after computations.
o Big influence on the results!

o For one of the models:

Noise range: [0; val) Wasserstein

1.0 12.57

0.75 6.67

0.5 4.58

0.1 7.10

0.01 8.10

0.001 7.39

http://www.agh.edu.pl/


Diffusion models

• Training a Denoising Diffusion 
Probabilistic Model (DDPM).
o U-Net with convolutions and attentions.

• Sampling with a Denoising Diffusion 
Implicit Model (DDIM).
o Allows for fewer steps.

• Tradeoff between generation time
and the quality of the samples.

http://www.agh.edu.pl/


Final performance and generation time comparison

Model Wasserstein MAE RMSE Generation time [ms]

GEANT
(original data)

0.53 16.41 59.87 –

Autoencoder 11.19 15.47 43.49 0.015

GAN 5.70 24.71 100.98 0.023

VQ-VAE 9.61 21.95 65.82 0.091

VQ-GAN 4.58 22.90 85.45 0.091

NF 4.11 19.36 127.22 160.0

Diffusion 3.15 20.10 73.58 5.360

http://www.agh.edu.pl/


Original and diffusion-generated data channels



Example simulations

Reference

Autoencoder with a noise generator and MSE loss

GAN with a postprocessing step

http://www.agh.edu.pl/


Example simulations

Reference

VQ-VAE with a transformer as a learnable prior and adjusted sampling temperature

VQ-GAN with a transformer as a learnable prior

http://www.agh.edu.pl/


Example simulations

Reference

DDIM after 50 denoising steps and adjusted η parameter

NF with training noise set to 0.5

http://www.agh.edu.pl/


Pros & cons

VAEs GANs VQs NFs DIFFs

Pros
• Fast 

generation
• Fast 

generation

• Pretty good 
metrics and 
a reasonable 
generation 
time

• Good metrics
• The best 

metrics

Cons

• Blurry 
outputs

• Perturbated
diversity

• Training 
stability 
issues

• Complicated 
framework

• Very slow 
generation*

• Slow 
generation



Conclusions and future directions

• ViT-based frameworks are the most effective.

• VQs, NFs and Diffusion models perform the best and are worth-developing.
o VQs provide the best tradeoff between generation time and sample quality.

o NFs have potential, though need to be faster.

o Diffusion is great... but maybe can be even better?

• We want to further explore these three methods.

http://www.agh.edu.pl/


Code availability

https://github.com/m-wojnar/zdc

http://www.agh.edu.pl/
https://github.com/m-wojnar/zdc
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Thank you!

You can contact us via

majerz@agh.edu.pl

mwojnar@agh.edu.pl

http://www.agh.edu.pl/
mailto:majerz@agh.edu.pl
mailto:majerz@agh.edu.pl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

