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Scattered Radiation

Scatter

Interaction radiation with
matter.

Cross section for photons at
Eγ = 511 keV.

Compton Effect.
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Scatter Radiation Correction

Scatter Radiation Correction Methods

Energy Window: From Dual Energy Window to Multiple Energy
Windows: Applied on sinograms.

Single Scatter Simulation: Computationally expensive and requires the
µ-map of the patient.

Extrapolation of scatter profiles outside of the object with smooth
functions.

Monte Carlo Simulations.

Deep Learning based corrections.
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Breast imaging

Screening

Depends on the breast density
(∼ 9% of positive cases are not
detected).

Complimentary tools: Ultrasound, MRI

Disadvantages: Dependency on the operator. The malignancy of the
lesions are not distinguished (∼ 70− 90% of the biopsies are
unnecessary).

Nuclear medicine: WB-PET and PEM

PEM Advantages: Time for a study, Radiation Dose,
Spatial resolution, Cost. Monitoring during treatment
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Breast Imaging
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Positron Emission Mammography (PEM)

Advantages

Better spatial resolution than WB-PET: Small and early
stage tumor detection (Resp ≈ 1− 3mm).
Higher sensitivity than WB-PET: Smaller radiation dose
to patients.
Early detection of metabolic activity of cancer cells.
Less amount of false positives: Reduction in the number
of unnecessary biopsies.
PEM scanner has lower costs than conventional PET.

Challenges

Dual Panel: Limited Angle Tomography.
Commercial prototypes do not include attenuation and
scatter correction.
Quantification is not possible.
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de México, 2018



Monte Carlo Simulation

Considerations

Detailed simulation of the
prototype of our lab.

GATE.

Positron source.

Coincidence window: 6 ns.

Energy window: [350, 750] keV.

Energy resolution: 13%.

LYSO crystals.

Simulation time: 60s

Concentration of Activity: 10
kBq/ml.

Several phantoms.

Output
Data: List Mode.

Number of events: ∼ 106 per study.
File: *.root

Information:
(X1,Y1,Z1,X2,Y2,Z2,E1,E2, S1, S2, . . . ).

Reference
Saaidi, Rahal, et al. ”Crystal
scatter effects in a large-area
dual-panel Positron Emission
Mammography system.” Plos
one 19.3 (2024): e0297829.
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Phantoms

Uniformity (U)

Spill Over Ratio (SOR)

Recovery Coefficients (RC)

Contrast

MiniDerenzo
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2018
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”A dedicated phantom design for
positron emission mammography
performance evaluation.” Physics
in Medicine & Biology 65.24
(2020): 245003.
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PEM Prototype



Machine Learning Models

Problem

Binary Classification Problem.

Question: Did any of the pair of detected photons undergo
Compton Scatter in the phantom before being detected?

Features: X1,Y1,X2,Y2,E1,E2.

Label: not (S1 or S2)



Machine Learning Models
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Machine Learning Models

Training

Data pre-processing: StandardScaler()

Hyperparameters: Grid Search

Cross Validation: 5-fold.

Score: F1-Score.

Output: Scaler.bin, Model.joblib and ScatterFree.root



Machine Learning Models

Comparison of Models

Equations

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2 ∗
Precision ∗ Recall
Precision + Recall

(4)

Set of best parameters: Random Forest

Number of estimators: 34.

Maximum depth: 12.
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Machine Learning Models

Confusion Matrix

Feature Importance
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Energy distribution for true and scattered
coincidences

Ground truth

Random Forest Predictions

Note:

Energy
resolution
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device is
very
important!
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Machine Learning Models

Scatter Fraction



Results

Reconstructed images: LM-OSEM (Castor)

Lesions Phantom + Scattering
shell (2 cm)



Results

Contrast

Cj =

Ij
Ibg
− 1

Aj

Abg
− 1
∗ 100%



Preliminary Experimental Results

Experimental Reconstructed images: LM-OSEM (Castor)

Reference
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Take home message

Concluding remarks

Several Machine Learning models have been implemented for Scatter
Correction in a Dual-Panel Positron Emission Mammography Scanner.

The training data is acquired from Monte Carlo simulations

Each pair of photons is analyzed individually by the Machine Learning
Algorithm to see if it has undergo Compton Scattering or not (binary
classification).

The best results were found with a random forest:
▶ Accuracy: 0.883
▶ Reduction in Scatter fraction.
▶ Better contrast.

What’s next?
▶ To train the ML algorithms with voxelized phantoms.
▶ More experimental data.
▶ Towards quantitative PEM: To develop a framework for PEM scanner
including scatter and attenuation corrections and mitigating the limited
angle artifacts.



Dzięki!
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