

Machine Learning-based Scatter Correction for a Dual-Panel Positron Emission Mammography Scanner WMLQ2024 - Warsow, Poland

Fernando Moncada, Mercedes Rodríguez-Villafuerte, Hector Alva-Sánchez, Arnulfo Martínez-Dávalos.

Instituto de Física, UNAM, México

June 6, 2024

Nuclear Medicine

References

de Paula Faria, D., Copray, S., Buchpiguel, C., Dierckx, R., & de Vries, E. (2014). PET imaging in multiple sclerosis. Journal of neuroimmune pharmacology, 9, 468-482.

nac

3

Main corrections

- Attenuation
 Correction
- Scatter Correction
- Random Correction
- Dead time Correction

References

Cherry, Simon R., James A. Sorenson, and Michael E. Phelps. Physics in nuclear medicine. Saunders, 2013.

(日)、(四)、(日)、(日)、

Main corrections

- Attenuation
 Correction
- Scatter Correction
- Random Correction
- Dead time Correction

References

Cherry, Simon R., James A. Sorenson, and Michael E. Phelps. Physics in nuclear medicine. Saunders, 2013.

Types of coincidences

Scatter

- Interaction radiation with matter.
- Cross section for photons at $E_{\gamma} = 511$ keV.
- Compton Effect.

•
$$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma'}}{m_0 c^2} (1 - \cos \theta)}$$

Scatter

- Interaction radiation with matter.
- Cross section for photons at $E_{\gamma} = 511$ keV.
- Compton Effect.

•
$$E_{\gamma'} = rac{E_{\gamma}}{1 + rac{E_{\gamma'}}{m_0 c^2} (1 - \cos \theta)}$$

Compton Effect Scattered electron Incident photon Electron (日)

Scatter Radiation Correction Methods

- Energy Window: From Dual Energy Window to Multiple Energy Windows: Applied on sinograms.
- Single Scatter Simulation: Computationally expensive and requires the μ -map of the patient.
- Extrapolation of scatter profiles outside of the object with smooth functions.
- Monte Carlo Simulations.
- Deep Learning based corrections.

References

- Zaidi, Habib, and Kenneth F. Koral. "Scatter modelling and compensation in emission tomography." European journal of nuclear medicine and molecular imaging 31 (2004): 761-782.
- Y. Berker, J. Maier and M. Kachelrieß, "Deep Scatter Estimation in PET: Fast Scatter Correction Using a Convolutional Neural Network," 2018 IEEE NSS/MIC, Sydney, NSW, Australia, 2018, pp. 1-5.
- C. C. Watson, "New, faster, image-based scatter correction for 3D PET," 1999 IEEE NSS/MIC. Seattle, WA, USA, 1999, pp. 1637-1641 vol.3

Depends on the breast density (\sim 9% of positive cases are not detected).

・ロト ・四ト ・ヨト ・ヨト

Depends on the breast density (\sim 9% of positive cases are not detected).

Complimentary tools: Ultrasound, MRI

Disadvantages: Dependency on the operator. The malignancy of the lesions are not distinguished ($\sim 70-90\%$ of the biopsies are unnecessary).

A D > A P > A B > A B >

nac

Screening

Depends on the breast density (\sim 9% of positive cases are not detected).

Complimentary tools: Ultrasound, MRI

Disadvantages: Dependency on the operator. The malignancy of the lesions are not distinguished (\sim 70 - 90% of the biopsies are unnecessary).

Nuclear medicine: WB-PET and PEM

PEM Advantages: Time for a study, Radiation Dose, Spatial resolution, Cost. Monitoring during treatment

References

- Claire Keun Sun Park (2021). Toward dedicated positron emission mammography and ultrasound-guided breast biopsy. OICR.
- Thompson, C. J., Murthy, K., Picard, Y., Weinberg, I. N., & Mako, R. (1995).
 Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE transactions on nuclear science, 42(4), 1012-1017.

Breast Imaging

References

MacDonald, L., Edwards, J., Lewellen, T., Haseley, D., Rogers, J., Kinahan, P. (2009). Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. Journal of Nuclear Medicine, 50(10), 166-1675.

・ロト ・四ト ・ヨト ・ヨト

Advantages

- Better spatial resolution than WB-PET: Small and early stage tumor detection ($R_{esp} \approx 1 3mm$).
- Higher sensitivity than WB-PET: Smaller radiation dose to patients.
- Early detection of metabolic activity of cancer cells.
- Less amount of false positives: Reduction in the number of unnecessary biopsies.
- PEM scanner has lower costs than conventional PET.

Advantages

- Better spatial resolution than WB-PET: Small and early stage tumor detection ($R_{esp} \approx 1 3mm$).
- Higher sensitivity than WB-PET: Smaller radiation dose to patients.
- Early detection of metabolic activity of cancer cells.
- Less amount of false positives: Reduction in the number of unnecessary biopsies.
- PEM scanner has lower costs than conventional PET.

Challenges

- Dual Panel: Limited Angle Tomography.
- Commercial prototypes do not include attenuation and scatter correction.
- Quantification is not possible.

References

- Yamamoto, Y., Tasaki, Y., Kuwada, Y., Ozawa, Y., Inoue, T. (2016). A preliminary report of breast cancer screening by positron emission mammography. Annals of nuclear medicine, 30, 130-137.
- Glass, S. B., Shah, Z. A. (2013, July). Clinical utility of positron emission mammography. In Baylor University Medical Center Proceedings (Vol. 26, No. 3, pp. 314-319). Taylor Francis.
- R. Osorio, "Iterative reconstruction in list mode for a PEM prototype", Master Thesis, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, 2018

Advantages

- Better spatial resolution than WB-PET: Small and early stage tumor detection ($R_{esp} \approx 1 3mm$).
- Higher sensitivity than WB-PET: Smaller radiation dose to patients.
- Early detection of metabolic activity of cancer cells.
- Less amount of false positives: Reduction in the number of unnecessary biopsies.
- PEM scanner has lower costs than conventional PET.

Challenges

- Dual Panel: Limited Angle Tomography.
- Commercial prototypes do not include attenuation and scatter correction.
- Quantification is not possible.

References

- Yamamoto, Y., Tasaki, Y., Kuwada, Y., Ozawa, Y., Inoue, T. (2016). A preliminary report of breast cancer screening by positron emission mammography. Annals of nuclear medicine, 30, 130-137.
- Glass, S. B., Shah, Z. A. (2013, July). Clinical utility of positron emission mammography. In Baylor University Medical Center Proceedings (Vol. 26, No. 3, pp. 314-319). Taylor Francis.
- R. Osorio, "Iterative reconstruction in list mode for a PEM prototype", Master Thesis, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, 2018

Advantages

- Better spatial resolution than WB-PET: Small and early stage tumor detection ($R_{esp} \approx 1 3mm$).
- Higher sensitivity than WB-PET: Smaller radiation dose to patients.
- Early detection of metabolic activity of cancer cells.
- Less amount of false positives: Reduction in the number of unnecessary biopsies.
- PEM scanner has lower costs than conventional PET.

Challenges

- Dual Panel: Limited Angle Tomography.
- Commercial prototypes do not include attenuation and scatter correction.
- Quantification is not possible.

References

- Yamamoto, Y., Tasaki, Y., Kuwada, Y., Ozawa, Y., Inoue, T. (2016). A preliminary report of breast cancer screening by positron emission mammography. Annals of nuclear medicine, 30, 130-137.
- Glass, S. B., Shah, Z. A. (2013, July). Clinical utility of positron emission mammography. In Baylor University Medical Center Proceedings (Vol. 26, No. 3, pp. 314-319). Taylor Francis.
- R. Osorio, "Iterative reconstruction in list mode for a PEM prototype", Master Thesis, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, 2018

240 mm

<ロト < 同ト < ヨト < ヨト

Monte Carlo Simulation

Considerations

- Detailed simulation of the prototype of our lab.
- GATE.
- Positron source.
- Coincidence window: 6 ns.
- Energy window: [350, 750] keV.

- Energy resolution: 13%.
- LYSO crystals.
- Simulation time: 60s
- Concentration of Activity: 10 kBq/ml.

(日)

Several phantoms.

Monte Carlo Simulation

Considerations

- Detailed simulation of the prototype of our lab.
- GATE.
- Positron source.
- Coincidence window: 6 ns.
- Energy window: [350, 750] keV.

- Energy resolution: 13%.
- LYSO crystals.
- Simulation time: 60s
- Concentration of Activity: 10 kBq/ml.
- Several phantoms.

Output

- Data: List Mode.
- Number of events: $\sim 10^6$ per study.
- File: *.root
- Information:
 (X₁, Y₁, Z₁, X₂, Y₂, Z₂, E₁, E₂, S₁, S₂,...).

Reference

(日)、(四)、(日)、(日)、

Saaidi, Rahal, et al. "Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system." Plos one 19.3 (2024): e0297829.

Uniformity (U)

Uniformity (U)

Uniformity (U)

590

æ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○

æ

<ロト <回 > < 回 > < 回 > < 回 > :

PEM Prototype

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Problem

- Binary Classification Problem.
- Question: Did any of the pair of detected photons undergo Compton Scatter in the phantom before being detected?
- Features: $X_1, Y_1, X_2, Y_2, E_1, E_2$.
- Label: not $(S_1 \text{ or } S_2)$

Support Vector Machines

nac

э

<ロ> (日) (日) (日) (日) (日)

Sac

Gradient Boost

イロト イヨト イヨト

э

Training

- Data pre-processing: StandardScaler()
- Hyperparameters: Grid Search
- Cross Validation: 5-fold.
- Score: F1-Score.
- Output: Scaler.bin, Model.joblib and ScatterFree.root

Equations

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad (1)$$

$$Precision = \frac{TP}{TP + FP}$$
(2)

$$Recall = \frac{TP}{TP + FN}$$
(3)

<ロ> (日) (日) (日) (日) (日)

$$F1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall} \quad (4)$$

Sac

э

Equations

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad (1)$$

$$Precision = \frac{TP}{TP + FP}$$
(2)

$$Recall = \frac{TP}{TP + FN}$$
(3)

イロト イロト イモト イモン

$$F1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall} \quad (4)$$

Set of best parameters: Random Forest

- Number of estimators: 34.
- Maximum depth: 12.

Feature Importance

<ロ> (日) (日) (日) (日) (日)

nac

Energy distribution for true and scattered coincidences

Sac

Energy distribution for true and scattered coincidences

Random Forest Predictions

P

naa

Energy distribution for true and scattered coincidences

Note:

500

400

300

200

100

Energy resolution of the device is very important!

Random Forest Predictions

naa

Scatter Fraction

э

• □ ▶ < 同 ▶ < 三 ▶</p>

< ≣⇒

nac

Results

<ロ> (日) (日) (日) (日) (日)

Preliminary Experimental Results

Reference

Anayeli León, et. al. Quantification of tumour uptake in Positron Emission Mammography. Poster. XVIII MSMP.

Sac

• □ ▶ < 同 ▶ < 三</p>

Take home message

Concluding remarks

- Several Machine Learning models have been implemented for Scatter Correction in a Dual-Panel Positron Emission Mammography Scanner.
- The training data is acquired from Monte Carlo simulations
- Each pair of photons is analyzed individually by the Machine Learning Algorithm to see if it has undergo Compton Scattering or not (binary classification).
- The best results were found with a random forest:
 - Accuracy: 0.883
 - Reduction in Scatter fraction.
 - Better contrast.
- What's next?
 - To train the ML algorithms with voxelized phantoms.
 - More experimental data.
 - Towards quantitative PEM: To develop a framework for PEM scanner including scatter and attenuation corrections and mitigating the limited angle artifacts.

Dzięki!

Acknowledgment

We thank the support from PAPIIT grant IN108721, the Ph.D. scholarship of Fernando Moncada from CONAHCyT and the PAEP scholarship for the workshop.

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○