Using 3D CNNs for distortion corrections in PET imaging

<u>Konrad Klimaszewski</u>, Wojciech Krzemień, Michał Obara 06.06.2024

- Low-level corrections and calibrations
- Fast simulations

- Replacement of the "standard" image algorithm
- Image reconstruction • speed-up
- Corrections •

- Radiomics
- Image denosing and segmentation

E. Berg and Simon R. Cherry, Phys Med Biol. 2018 Jan 11;63(2):02LT01. E.g. J.S. Lee. IEEE Transactions on Radiation and Plasma Medical Sciences 2020

Many studies on image reconstruction using DL and CT-free PET.

Cost-effective total body solution

Modular J-PET

- 50 cm AFOV (Axial Field of View)
- 24 modules x 13 strips
- Readout → silicon photomultipliers matrices

Total-body J-PET

PET Clinics 15 (2020) 439 Phys. Med. Biol. 66 (2021) 175015

- 250 cm AFOV
- Additional layers of wavelength shifters → better axial resolution

Towards multiphoton/positronium tomography

positronium

Model of the hemoglobin molecule

P. Moskal et al. EJNMMI Phys. 7 (2020) 44

P. Moskal, B. Jasińska, E. Ł. Stępień, S. D. Bass Nature Reviews Physics 1 (2019) 527-529

P. Moskal et al. Phys. Med. Biol. 64 (2019) 055017

P. Moskal, K. Dulski et al Science Advances 7 (2021) eabh4394

P. Moskal, A. Gajos et al. Nature Communications 12 (2021) 5658

Coincidence classification for total-body J-PET

True

Training data generation

Monte Carlo Simulations

TB J-PET

- 243 cm AFOV
- 7 rings
- 2cm gap between rings
- 30 x 6 x 330 mm strips
- 24 modules with 2 layers of 16 strips

XCAT Phantom

- Voxelised human anatomic phantom
- Activity 50 Mbq
- Acquisition time 600 seconds
- Contrast for hot regions: 16:1 lungs, 3:1 liver

GATE MC Simulation

- 356M coincidences
- Phenomenological time, energy and positional resolution
- Geometry cuts → reduce accidental fraction

Coincidence classification for total-body J-PET

After loose True: 49.9% Scatter: 25.7% Accidental: 23.2% geometry cuts

Increased background for novel PET

1. Geometry of total body scanners

2. Photon Energy deposition in J-PET via compton scattering

 θ_{12} θ_{23} θ_{31} y y z $0-Ps \rightarrow 3\gamma$

9

3. Event topology and photon energy spectra for multi photon imaging

Total body PET diagram adapted from D. Brasse et al. J Nucl Med 2005; 46:859–867 Idea: apply ML techniques to reduce background (ACCIDENTAL, SCATTER)

Our "Classic" Classifiers

3 types of models:

- Feedforward Neural Network
- ADABoost
- XGBoost

2 scenarios:

- 6 features
- 4 features

2 phantoms:

- XCAT
- NEMA IEC

Single Scatter Simulations (SSS)

Figure 5.16. Geometry of the single scattering model used in simulation based scatter correction.

Ingredients

Activity estimate

Attenuation map

Ingredients extended

- 0.12

0.10

- 0.08

- 0.04

0.02

0.00

-0.06

Activity estimate

Attenuation map

List Mode

List-mode File

Start time

End time

S

 S_2 S_3 S_4

Time-of-Flight

Network diagram adapted from B. Vacchetti, Electronics 2022, 11, 1570

Data encoding

Channel 1

Channel 2

Channel 1 + Channel2

- Channel 1: Rescaled attenuation map:
 - [2.5, 2.5, 2.5] mm → [10, 10, 10] mm
- Channel 2: Coincidence most likely position \rightarrow 3D gaussian II LoR σ = 50 mm; \perp LoR σ = 40 mm
- Image cropped $\pm 3\sigma$

Data encoding

X vs Y

Y vs Z

- Channel 1: Rescaled attenuation map:
 - $[2.5, 2.5, 2.5] \text{ mm} \rightarrow [10, 10, 10] \text{ mm}$
- Channel 2: Coincidence most likely position \rightarrow 3D gaussian II LoR σ = 50 mm; \perp LoR σ = 40 mm
- Image cropped ±3σ

3D CNN Classification Network

 Tan, M. and Le, Q.V., Proceedings of the ICML 2019, Long Beach, 9-15 June 2019, 6105-611
3D EffNetB0 implementation: R. Solovyev at al., Computers in Biology and Medicine 141 (2022) 105089 18 https://github.com/ZFTurbo/classification_models_3D

Training results

- Keras + TensorFlow
- Coincidences: 1M •
- Epochs: 20
- Batch size: 128 •
- Optimizer: RMSprop with default settings
- Loss: • Categorical **Cross Entropy**

Training results

3D EfficientNet B0 + Data Encoding + 3 Features

Positive Predictive Value

21

Attenuation & Sensitivity correction (CASToR)

 CASTOR package: M. Thibaut et al., Physics in Medicine & Biology, 63(18) 5505, 2018 https://castor-project.org
R. Shopa et al., Medical Image Analysis 73 (2021) 102199

Image analysis

Difference to "True" coincidences

Ratio to "True" coincidences

Summary

Method	Precision @95%	Accuracy
Base line	49.9% True Events	
XGBoost (4 features)	68.7%	67.1%
ADABoost (6 features)	69.1%	69.6 %
NN (6 features)	69.1%	69.3%
XGBoost (6 features)	69.5 %	69.7%
3D EfficientNet B0	77.0%	75.5%

Summary

Goal: Verification of ML applicability for PET coincidence classification

- We propose a novel encoding of List Mode data
- We propose a 3D CNN model with auxiliary feature vector

Our 3D CNN model results:

- Improved Accuracy by ~6%
- Improved Precision by ~7%
- Improved spatial uniformity of model prediction

Outlook

- Optimization \rightarrow training / inference speedup
- Validation of less resource hungry models
- More diverse training data
- Dataset balancing
- Verification with other phantom / scanner geometries

Dataset

Dataset

Distribution of "True" fraction

Training data generation

TB J-PET

- 243 cm AFOV
- 7 rings
- 2cm gap between rings
- 30 x 6 x 330 mm strips
- 24 modules with 2 layers of 16 strips
- EJ320 scinitillator

XCAT Phantom

- Voxelised human male anatomic phantom
- ¹⁸F-FDG
- Activity 50 Mbq
- Acquisition time 600 seconds
- Hot regions diameter 1.2 cm
- Contrast for hot regions: 16:1 lungs, 3:1 liver

Monte Carlo Simulations

GATE MC Simulation

- GATE v9.0
- 356M coincidences
- σ_t = 77 [ps]
- σ_z = 2.12 [mm]
- σ(E)/E = 0.044 / sqrt(E) [MeV]
- Geometry cuts → reduce accidental fraction

EfficientNet

