

Search for Exotics in B decays at LHCb

Graduate Physics Seminar

Salil Joshi

Supervisor : Prof. Wojciech Wislicki
Auxiliary Supervisor: Dr. Dmytro Melnychuk

What do we know......

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B $=1 / 3$.

What do we know.

- Hadrons : composites of fractionally charged fermions - quarks ($\mathbf{u}, \mathrm{d}, \mathbf{s}$) with baryon number \mathbf{B} $=1 / 3$.
- Quarks : carry strong-interaction charges : 3 color dof - red-blue-green and anti charges.

What do we know.

- Hadrons : composites of fractionally charged fermions - quarks ($\mathbf{u}, \mathbf{d}, \mathbf{s}$) with baryon number \mathbf{B} $=1 / 3$.
- Quarks : carry strong-interaction charges : 3 color dof - red-blue-green and anti charges.

- Color neutral hadrons :
- Baryons (qqq) : proton, neutron,....
- Mesons ($q \bar{q}$) : pions, Kaons,.....

What do we know.

- Hadrons : composites of fractionally charged fermions - quarks ($\mathbf{u}, \mathbf{d}, \mathbf{s}$) with baryon number \mathbf{B} $=1 / 3$.
- Quarks : carry strong-interaction charges : 3 color dof - red-blue-green and anti charges.

- Color neutral hadrons :
- Baryons (qqq) : proton, neutron,....
- Mesons $(q \bar{q})$: pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.

What do we know.

- Hadrons : composites of fractionally charged fermions - quarks ($\mathbf{u}, \mathbf{d}, \mathbf{s}$) with baryon number \mathbf{B} $=1 / 3$.
- Quarks : carry strong-interaction charges : 3 color dof - red-blue-green and anti charges.
- Color neutral hadrons :
- Baryons (qqq) : proton, neutron,....

- Mesons ($q \bar{q}$) : pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.
- $\mathrm{SU}(3)$ structure of the gauge symmetry describing the 3 color charges produces all possible color-singlet combinations.

What do we know.

- Hadrons : composites of fractionally charged fermions - quarks ($\mathbf{u}, \mathrm{d}, \mathbf{s}$) with baryon number \mathbf{B} $=1 / 3$.
- Quarks : carry strong-interaction charges : 3 color dof - red-blue-green and anti charges.
- Color neutral hadrons :
- Baryons (qqq) : proton, neutron,....

- Mesons $(q \bar{q})$: pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.
- $\mathrm{SU}(3)$ structure of the gauge symmetry describing the 3 color charges produces all possible color-singlet combinations.
- More complex structures?

schematic model of baryons and mesons *
M.GELL-MANN

Califomia Istilute of Tectrolog, Passedera, Califomia
Received daunary 1964
anti-triplet as anti-quarks qu. Baryons can now be In general, we would expect trat baryons are wuilt not only from the product constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out

Exotics

- Conventional States : states well understood phenomenologically in the Quark Model i.e. $q \bar{q}$ and qqq

Exotics

- Conventional States : states well understood phenomenologically in the Quark Model i.e. $q \bar{q}$ and qqq
- Exotic states : 4-5 quark states, unconventional Q no., glue balls etc....

Exotics

- Conventional States : states well understood phenomenologically in the Quark Model i.e. $q \bar{q}$ and qqq
- Exotic states : 4-5 quark states, unconventional Q no., glue balls etc....

Compact Multi-quark : Tightly bound directly by strong interactions.

Hadronic Molecular : Weakly bound by residual strong interaction

Motivation for search :

- Based purely on experimental observation :
- $\mathrm{X}(3872)$, accidental discovery by Belle as a narrow peak in the $\mathrm{J} / \psi \pi^{+} \pi^{-}$ invariant mass distribution
- Many other resonances such as X (3940), observed in experimental data, do not fit into conventional states with no theoretical predictions.
- Their J ${ }^{P C}$ are unknown.
- Various decay modes are un-measured.
- Observational significance is low and need further investigations to confirm their existence.

Motivation for search :

- Based purely on experimental observation :
- $\mathrm{X}(3872)$, accidental discovery by Belle as a narrow peak in the $\mathrm{J} / \psi \pi^{+} \pi^{-}$ invariant mass distribution
- Many other resonances such as X (3940), observed in experimental data, do not fit into conventional states with no theoretical predictions.
- Their JPC are unknown.
- Various decay modes are un-measured.
- Observational significance is low and need further investigations to confirm their existence.

- Based on theoretical predictions :

- If the $\mathrm{X}(3872)$ were a conventional cci state, transitions to the $X_{c J}$ should be very small ; in contrast to tetra-quark or molecular state.
- Measuring pionic transitions $X(3872) \rightarrow X_{c 1} \pi^{0}$ could distinguish between various interpretations

Hadron Spectroscopy at LHC

Hadron Spectroscopy at LHCb

Exotic Hadrons at LHC

B decays

- B meson produced in high-energy Hadron Collisions : $p \bar{p}$ and $p p$
- Each $\mathrm{b} \mathrm{\bar{b}}$ quark of a pair, hadronizes separately.
- B meson are a \bar{b} and $\mathbf{u}, \mathrm{d}, \mathbf{s}$, or \mathbf{c} quark: $\mathrm{B}^{+}, \mathrm{B}^{0}, \mathrm{~B}_{\mathrm{s}}$, and B_{c}
- B - flavored hadrons decay via generation-changing processes
- Dominant decay mode of a B quark is $\mathbf{b} \rightarrow \mathbf{c W}^{-}$
- Forms charmed mesons or $\mathbf{c c}$ (charmonium).

My PhD work is dedicated to search for exotics in charmonimum (c̄̄) sector at LHCb.

Why Charmonium?

- Have reliable predictions of expected conventional states.
- Charm : lightest 'heavy' quark - $\mathrm{m}_{\mathrm{c}} \gg \Lambda_{\mathrm{QCD}}$ - can determine cc̄ spectrum with simple non-relativistic Q-M treatment.

OZI-suppressed

OZI-allowed

- Decays of conventional cc̄ states with masses below open charm threshold $\mathrm{m}_{D D}$ are OZI suppressed - states are narrow and well separated.
- Above the open charm threshold OZI allowed processes dominate wider resonances but still significantly narrower than light quark states.

Why LHCb?

- Largest data sample of b and c hadrons
- Triggers optimised for final state particles $\mathrm{J} / \Psi(1 \mathrm{~S})$ and $\Psi(2 \mathrm{~S})$.
- Dedicated computational tools available for thorough search of exotics.
on \quad positive pion photon proton

5 metres
kaon
tracking detector (for measuring position)

Run	Years	Lum. $\left[\mathrm{fb}^{-1}\right]$	\sqrt{s} $[\mathrm{TeV}]$	$\sigma_{b \bar{b}}$ $[\mu \mathrm{~b}]$	$\sigma_{c \bar{c}}$ $[\mu \mathrm{~b}]$
1	$2011-12$	3.0	7,8	70	1400
2	$2015-17$	3.8	13	150	2400
2	2018	2.2	13		

- Single arm forward spectrometer : © Efficient hadronic identification.

$$
2<\eta<5
$$

- Impact parameter resolution:

$$
\sigma_{\mathbb{I}} \approx 20 \mu \mathrm{~m}
$$

- Momentum resolution:

$$
\text { - } \frac{\Delta P}{P} \backsim 0.5-1 \%
$$

- PID separation K, p from π :

$$
\begin{aligned}
& \text { - } \epsilon(K \rightarrow K) \approx 95 \% \text { and } \\
& \epsilon(\pi \rightarrow K) \approx 5 \% \\
& \text { - } \epsilon(p \rightarrow p) \approx 95 \% \text { and } \\
& \epsilon(\pi \rightarrow p) \approx 5 \%
\end{aligned}
$$

Tetra-Quarks

Open Charm

- Either only c or only \bar{c}, non zero net charm content.
- $\mathrm{T}^{*}{ }^{\text {cso }}(2870)^{0}$ and $\mathrm{T}^{*}{ }_{\text {cs1 }}(2900)^{0}$
- $\mathrm{T}^{+}{ }_{\mathrm{cc}}^{\mathrm{css}}(3875)$: ccud
(a)

$$
B^{0} \rightarrow \bar{D}^{0} D_{s}^{+} \pi^{-} \quad B^{+} \rightarrow D^{-} D_{s}^{+} \pi^{+}
$$

(b)

Tetra-Quarks

Open Charm

Hidden Charm

- cc̄ pairs, zero net charm content.
- 2 Fully charm $\mathrm{T}_{\psi ш}(6900)^{+}$: cccc
- $\mathrm{P}^{\wedge}{ }_{\psi S}(4459)^{0}, \mathrm{~T}^{\theta}{ }_{\psi s 1}{ }^{\Psi \psi}(4000)^{+} \ldots .$.

$$
B^{0} \rightarrow \bar{D}^{0} D_{s}^{+} \pi^{-} \quad B^{+} \rightarrow D^{-} D_{s}^{+} \pi^{+}
$$

(b)

$$
B^{0} \rightarrow J / \psi \phi K_{S}^{0}
$$

Methodology

- Decay : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\Psi}(\mathbf{1 S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Methodology

- Decay : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\Psi}(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Selecting the stripping line associated with final charmonium state (in our case $\boldsymbol{J} / \boldsymbol{\Psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and other final state particles such as Kaons, pions : charged and neutral)

Methodology

- Decay : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\Psi}(\mathbf{1 S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Selecting the stripping line associated with final charmonium state (in our case $\mathrm{J} / \boldsymbol{\Psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.

Methodology

- Decay : $\left.\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{(1 S}\right) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Selecting the stripping line associated with final charmonium state (in our case $\mathrm{J} / \boldsymbol{\Psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.

Methodology

- Decay : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(\mathbf{1 S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Selecting the stripping line associated with final charmonium state (in our case $\mathrm{J} / \boldsymbol{\Psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.
- Once a signal is observed in the expected mass range, cuts are further tightened to improve signal significance.

Methodology

- Decay : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{\Psi}(\mathbf{1 S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Selecting the stripping line associated with final charmonium state (in our case $\mathrm{J} / \boldsymbol{\Psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.
- Once a signal is observed in the expected mass range, cuts are further tightened to improve signal significance.
- Now a fit is performed on the data with proper models for signal and background, usually gaussian for former and exponential for later.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 S) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.
- In invariant mass distribution of daughter combination : Look for exotic signatures.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.
- In invariant mass distribution of daughter combination : Look for exotic signatures.
■ $\mathrm{K}^{*} \rightarrow \mathrm{~m}^{-} \mathrm{K}^{+}, \rho$ or $\omega \rightarrow{\Pi^{+}}^{-} \Pi^{-}, \ldots$.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 S) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.
- In invariant mass distribution of daughter combination : Look for exotic signatures.
■ $\mathrm{K}^{*} \rightarrow \mathrm{~m}^{-} \mathrm{K}^{+}, \rho$ or $\omega \rightarrow \pi^{+} \pi^{-}, \ldots$.
- Fit is performed using S-Plot technique : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 S) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.
- In invariant mass distribution of daughter combination : Look for exotic signatures.
■ $\mathrm{K}^{*} \rightarrow \pi^{-} \mathrm{K}^{+}, \rho$ or $\omega \rightarrow \pi^{+} \pi^{-}, \ldots$.
- Fit is performed using S-Plot technique : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 S) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.

■ In invariant mass distribution of daughter combination : Look for exotic signatures.
■ $\mathrm{K}^{*} \rightarrow \pi^{-} \mathrm{K}^{+}, \rho$ or $\omega \rightarrow \pi^{+} \Pi^{-}, \ldots .$.

- Fit is performed using S-Plot technique : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.
- Use these to weigh daughter combinations.

Methodology

- Let's make : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$
- Phase space uniform reconstruction.

■ In invariant mass distribution of daughter combination : Look for exotic signatures.
■ $\mathrm{K}^{*} \rightarrow \mathrm{~m}^{-} \mathrm{K}^{+}, \rho$ or $\omega \rightarrow \pi^{+} \Pi^{-}, \ldots$.

- Fit is performed using S-Plot technique : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.
- Use these to weigh daughter combinations.
- If decay occur via exotic / resonance state : structures observed as enhancements in intermediate particle mass combinations.

First Analysis : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

- $B^{0} \rightarrow \mathrm{~J} / \boldsymbol{\Psi}(1 \mathrm{~S}) \mathrm{T}^{+} \mathrm{m}^{-} \mathrm{m}^{-} \mathrm{K}^{+}$
- $\quad \mathbf{X}^{ \pm} \rightarrow \boldsymbol{\Psi}(\mathbf{3 7 7 0}) \pi^{ \pm}$(M. Ablikim et al. (BESIII Collaboration) Phys. Rev. D 100, 032005)
- New decay mode of B^{0} (excluding resonant contribution)
- General Idea : Possible observation of either new or previously un-confirmed exotic resonances and decay modes.
- We are interested in structures in :
- $Y=m\left(J / \Psi \pi^{+} \Pi^{-}\right)$
- $\quad \mathbf{X}=\mathrm{m}\left(\mathrm{J} / \Psi \pi^{+} \Pi^{-}\right) \pi^{ \pm}$
- Cut based selection is applied on the reconstructed data.

Y mass range	
Particle	Range
$\psi(2 S)$	$<3726 \mathrm{MeV}$ (I)
$\mathrm{Y}(3770,3823, \ldots)$	$3726-3990 \mathrm{MeV}$ (II)
$\mathrm{Y}(4040,4160,4230)$	$>3990 \mathrm{MeV}$ (III)

- Fit performed on J / Ψ constrained B mass
- S-weights are used to fit J / Ψ constrained Y and X mass.
- We look for B meson signal and possibility of structures in invariant mass combinations of daughter particle.
$M(J / \psi \pi+\pi-\Pi \pm K \mp)$

Range II :

First Analysis: $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Range I : B0 $\rightarrow(\psi(2 S) \rightarrow(\mathrm{J} / \Psi(1 S) \rightarrow \mu+\mu-) \pi+\pi-) \pi-\mathrm{K}+$

First Analysis: $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Range I : B0 $\rightarrow(\Psi(2 S) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi-) \pi-\mathrm{K}+$
Range II : B0 $\rightarrow\left(\Psi(3823) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+$

First Analysis : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \mathrm{m}^{+} \mathrm{m}^{-} \mathrm{m}^{-} \mathrm{K}^{+}$

Range I : $\mathrm{BO} \rightarrow\left(\psi(2 \mathrm{~S}) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$
Range II : B0 $\rightarrow\left(\Psi(3823) \rightarrow(\mathrm{J} / \Psi(1 S) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$

$$
\mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 1}(3872) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi^{+} \pi^{-}\right) \pi-\mathrm{K}+
$$

First Analysis : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Range I : $\mathrm{BO} \rightarrow\left(\psi(2 \mathrm{~S}) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$ Range II : B0 $\rightarrow\left(\Psi(3823) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$

$$
\begin{aligned}
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 1}(3872) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi^{+} \pi^{-}\right) \pi-\mathrm{K}+ \\
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 0}(3915) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi^{+} \pi^{-}\right) \pi-\mathrm{K}+
\end{aligned}
$$

First Analysis : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \mathrm{m}^{+} \mathrm{m}^{-} \mathrm{m}^{-} \mathrm{K}^{+}$

Range I : $\mathrm{BO} \rightarrow\left(\psi(2 \mathrm{~S}) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$ Range II : B0 $\rightarrow\left(\Psi(3823) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$

$$
\begin{aligned}
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 1}(3872) \rightarrow\left(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu^{-}\right) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+ \\
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 0}(3915) \rightarrow\left(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu^{-}\right) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+ \\
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 2}(3930) \rightarrow\left(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+
\end{aligned}
$$

First Analysis : $\left.\mathrm{B}^{0} \rightarrow \mathrm{~J} / \boldsymbol{(1 S}\right) \pi^{+} \pi^{-} \pi^{-} \mathrm{K}^{+}$

Range I : $\mathrm{BO} \rightarrow\left(\psi(2 \mathrm{~S}) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$ Range II : B0 $\rightarrow\left(\Psi(3823) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi^{-} \mathrm{K}+$

$$
\begin{aligned}
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 1}(3872) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+ \\
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 0}(3915) \rightarrow\left(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu^{-}\right) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+ \\
& \mathrm{B} 0 \rightarrow\left(\mathrm{X}_{\mathrm{c} 2}(3930) \rightarrow\left(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}\right) \pi^{-} \mathrm{K}+
\end{aligned}
$$

Range III $: \mathrm{BO} \rightarrow\left(\Psi(4160) \rightarrow(\mathrm{J} / \Psi(1 \mathrm{~S}) \rightarrow \mu+\mu-) \pi+\pi^{-}\right) \pi-\mathrm{K}+$

Second Analysis : $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 S) \pi^{+} \pi^{-} \pi^{0} \pi^{-} \mathrm{K}^{+}$

- $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi(1 \mathrm{~S}) \pi^{+} \pi^{-} \pi^{0} \pi^{-} \mathrm{K}^{+}$

○ $\mathbf{X}(3940) \rightarrow \mathbf{J} / \boldsymbol{\omega}(782)$ in $\mathbf{B}^{+} \rightarrow \boldsymbol{\omega} \mathbf{J} / \boldsymbol{\Psi} \mathrm{K}^{+}$ (BELLE/BABAR)

- $\Psi(4230) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \pi^{0}$
- New decay mode of B 0

$\left(J / \psi \pi^{+} \pi^{-}\right)$Mass	
Decay	Range
$\mathrm{B}^{0} \rightarrow \psi(2 S) \pi^{0} \pi^{-} K^{+}$	$3680-3700 \mathrm{MeV}$
$\mathrm{B}^{0} \rightarrow J / \psi(1 S) \pi^{+} \pi^{-} \pi^{0} \pi^{-} K^{+}$	$<3680 \mathrm{MeV}$
	$>3700 \mathrm{MeV}$

- 2 different reconstruction :
- First:
$\mathrm{B}^{0} \rightarrow\left(\mathrm{~J} / \boldsymbol{\Psi} \pi^{+} \pi^{-} \pi^{0}\right) \pi^{+} \mathrm{K}^{-}$
- Second:

$$
\mathrm{B}^{0} \rightarrow\left(\mathrm{~J} / \boldsymbol{\psi}\left(\boldsymbol{\omega} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0}\right)\right){\pi^{+}}^{-} \mathrm{K}^{-}
$$

Additional Cuts		
Particle	Parameter	Selection
ω	$\mathrm{M}\left(\pi^{+} \pi^{-} \pi^{0}\right)$	$742-822 \mathrm{MeV}$

- Resolved Pions used i.e. $\pi^{0} \rightarrow \mathrm{Yy}$
$M(J / \Psi \pi+\pi-\pi 0)$
Results : $\mathrm{B}^{0} \rightarrow\left(\mathrm{~J} / \Psi \pi^{+} \Pi^{-} \pi^{0}\right) \pi^{+} \mathrm{K}^{-}$

$M(J / \Psi \pi+\pi-\pi 0)$
Results : $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \Psi \omega) \pi^{+} \mathrm{K}^{-}$

Third Analysis : $\left.\mathrm{B}^{0} \rightarrow(\boldsymbol{(2 S}) \pi^{0}\right) \pi^{-} \mathrm{K}^{+}$

- $\mathrm{J} / \Psi \pi^{+} \pi^{-} \pi^{0}$ can also occur via $\left.(\boldsymbol{(})(2 \mathrm{~S}) \rightarrow \mathrm{J} / \Psi \pi^{+} \pi^{-}\right) \pi^{0}$
- Earlier studies veto out the contribution but we observed significant B0 signal.
- New Channel : $\mathbf{B}^{\mathbf{0}} \rightarrow \boldsymbol{\Psi}(\mathbf{2 S}) \boldsymbol{\pi}^{\mathbf{0}} \mathbf{\pi}^{+} \mathbf{K}^{-}$with $\psi(2 \mathrm{~S}) \rightarrow\left(\mathrm{J} / \boldsymbol{\psi} \boldsymbol{\pi}^{+} \mathrm{\Pi}^{-}\right)$

- To have an independent measurement of new observed B0 decay, we reconstructed $\mathbf{B}^{0} \rightarrow \boldsymbol{\Psi}$ (2S) $\pi^{0} \pi^{+} K^{-}$with $\boldsymbol{\mu}(2 S) \rightarrow \mu^{+} \mu^{-}$
- Signal was observed and will be included in the measurement of the branching fraction of the B decay.

- Producing MC events has a cost: 6000 Euro per 10M generic b events
- We asked : 180 M in total, yet

Let's summarise.....

We have observed 3 new decay modes of B meson and plan to measure their branching fractions.

$B^{0} \rightarrow\left(J / \Psi(1 S) \pi^{+} \pi^{-}\right) \pi^{-} K^{+}$

- Use MC to enhance observation of $\mathbf{X}_{\mathrm{c} 0}(\mathbf{3 9 1 5})$ and $\mathbf{X}_{\mathrm{c} 2}(\mathbf{3 9 3 0})$ decaying to $\mathrm{J} / \psi \pi^{+} \pi^{-}$
- Possible new decay mode or observation of a new Z state.
$B^{0} \rightarrow\left(J / \Psi \pi^{+} \pi^{-} \Pi^{0}\right) \pi^{+} K^{-}$
- Observed structure around masses :
- $X(3940) \rightarrow J / \psi \omega$
- $\quad X(4160) \rightarrow J / \psi \omega$
- $\boldsymbol{\Psi}(\mathbf{4 2 3 0}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \pi^{0}$
$B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$
- Possible observation of exotic resonances.

Multivariate Analysis

- But how much "right" signal is there?

Multivariate Analysis

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?

Multivariate Analysis

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.

Multivariate Analysis

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis: The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.

Multivariate Analysis

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis : The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.
- Vast amounts of data characterized by multiple variables: Automated algorithms for learning from data - Machine learning

Multivariate Analysis

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis: The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.
- Vast amounts of data characterized by multiple variables: Automated algorithms for learning from data - Machine learning
- Supervised learning : classifier is presented only with training events for which it knows "discriminating variables" and "class label".

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
- Signal : Monte Carlo data for the signal
- Background : Sideband events excluding signal region in raw data
- Discriminating Variables

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
- Signal : Monte Carlo data for the signal
- Background : Sideband events excluding signal region in raw data
- Discriminating Variables
- Difficult to make a very good discriminant, but simpler, more error-prone (high bias) i.e. Weak Classifiers.

Boosted Decision Tree (BDT)

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
- Signal : Monte Carlo data for the signal
- Background : Sideband events excluding signal region in raw data
- Discriminating Variables
- Difficult to make a very good discriminant, but simpler, more error-prone (high bias) i.e. Weak Classifiers.
- Boosting : goal is to combine weak classifiers into a new, more stable one, with a smaller error rate and better performance

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): $5150<B$ mass > 5450

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): $5150<B$ mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .
- Randomisation is important !!!

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT $=0$.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.
- Variable selection : No tricks!

How to do it?

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0 .
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets: Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.
- Variable selection : No tricks!
- How to optimise classifier ? : No tricks!

Kminus_IPCHI2

Kminus_PROBNNK

Input variable: piplus2_PT

Cut efficiencies and optimal cut value

- Apply training on whole data set, each run separately.
- "Friend" this training output event by event with data.
- New variable produced : BDT variable associated with every event.
- Values vary between : 0 and 1
- Figure of Merit or Signal Significance

Fom $=S / \sqrt{ }(S+B)$

- Figure of Merit or Signal Significance

Fom $=S / \sqrt{ }(S+B)$

- Apply a cut: BDT > x
- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Extract signal and background events and evaluate FoM at different x values.
- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Extract signal and background events and evaluate FoM at different x values.
- Optimum working point : BDT value corresponding to maximum FoM.
- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Extract signal and background events and evaluate FoM at different x values.

RUN II

RUN I

- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Extract signal and background events and evaluate FoM at different x values.

RUN II

- Optimum working point : BDT value corresponding to maximum FoM.
- Next step : fit using SPlot and extract information on intermediate particles.

RUN I

- Figure of Merit or Signal Significance

$$
\text { Fom }=S / \sqrt{ }(S+B)
$$

- Apply a cut: BDT > x
- Fit invariant mass of B meson :
- Signal : Johnson function
- Background : exponential
- Extract signal and background events and evaluate FoM at different x values.

RUN II

- Optimum working point : BDT value corresponding to maximum FoM.
- Next step : fit using SPlot and extract information on intermediate particles.

But first, lets look at B0 invariant mass

reduced_b_B_M_JPcon

- $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \Psi \boldsymbol{\omega}) \Pi^{+} \mathrm{K}^{-}$with $\boldsymbol{\omega} \rightarrow \pi^{+} \Pi^{-} \Pi^{0}$
- First guess : Mis-Identification between K^{+} / Π^{+}and K^{-} / Π^{-}:

reduced_b_B_M_JPcon
- $B^{0} \rightarrow(\mathrm{~J} / \Psi \omega) \Pi^{+} K^{-}$with $\omega \rightarrow \Pi^{+} \Pi^{-} \Pi^{0}$
- First guess : Mis-Identification between K^{+} / Π^{+}and K^{-} / Π^{-}:

■ Final state : $\mathrm{J} / \Psi \pi^{+} \pi^{-} \pi^{0} \pi^{+} \mathrm{K}^{-}$ - One particle Mis-ID

- Two particle Mis-ID

reduced_b_B_M_JPcon
- $B^{0} \rightarrow(J / \Psi \omega) \Pi^{+} K^{-}$with $\omega \rightarrow \pi^{+} \Pi^{-} \Pi^{0}$
- First guess : Mis-Identification between K^{+} / π^{+}and K^{-} / π^{-}:

■ Final state : $\mathrm{J} / \Psi \pi^{+} \pi^{-} \pi^{0} \pi^{+} \mathrm{K}^{-}$ - One particle Mis-ID

- Two particle Mis-ID
- Reconstruction in Rapid-Sim.

reduced_b_B_M_JPcon
- $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \Psi \omega) \pi^{+} \mathrm{K}^{-}$with $\omega \rightarrow \pi^{+} \Pi^{-} \Pi^{0}$
- First guess : Mis-Identification between
K^{+} / Π^{+}and K^{-} / Π^{-}:
■ Final state : $\mathrm{J} / \Psi \pi^{+} \pi^{-} \pi^{0} \pi^{+} \mathrm{K}^{-}$ - One particle Mis-ID
- Two particle Mis-ID
- Reconstruction in Rapid-Sim.

Bmass

reduced_b_B_M_JPcon

- $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \Psi \omega) \pi^{+} \mathrm{K}^{-}$with $\boldsymbol{\omega} \rightarrow \pi^{+} \Pi^{-} \Pi^{0}$
- First guess : Mis-Identification between K^{+} / Π^{+}and K^{-} / Π^{-}:

■ Final state : $\mathrm{J} / \Psi \pi^{+} \pi^{-} \Pi^{0} \pi^{+} \mathrm{K}^{-}$ - One particle Mis-ID

- Two particle Mis-ID
- Reconstruction in Rapid-Sim.
- Only tight PID cuts not enough......

Bmass

Results : $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \boldsymbol{\psi} \omega) \pi^{+} \mathrm{K}^{-}$

A RooPlot of "reduced_b_B_M_JPcon"

[^0]A RooPlot of "X3940_M"

Results : $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \boldsymbol{\psi} \omega) \pi^{+} \mathrm{K}^{-}$

A RooPlot of "reduced_b_B_M_JPcon"

Minuit2Minimizer : Valid minimum - status $=0$					
Edm $=0.000329056443562910673$					
Nfcn =	$=407$				
BYield	= 46525.8	+/-	567.62	(limited)	
SYield	= 7527.53	+/-	532.867	(limited)	
lambda	= 66.0257	+/-	3.68714	(limited)	
mu	= 5279.53	+/-	0.998792	(limited)	
p0	= -0.0734254	+/-	0.00934656		(limited)
p1	$=-0.00563422$		0.01637	(limited)	
p2	$=0.0434292$	+/-	0.00963522		(limited)

A RooPlot of "X3940_M"

Results : $\mathrm{B}^{0} \rightarrow(\mathrm{~J} / \boldsymbol{\psi} \omega) \pi^{+} \mathrm{K}^{-}$

A RooPlot of "reduced_b_B_M_JPcon"

Minuit2Minimizer : Valid minimum - status = 0					
Edm $=0.000329056443562910673$					
Nfon	407				
BYield	$=46525.8$	+/-	567.62	(limited)	
SYield	$=7527.53$	+/-	532.867	(limited)	
lambda	= 66.0257	+/-	3.68714	(limited)	
mu	= 5279.53	+/-	0.998792	(limited)	
p0	= -0.0734254	+/-	0.00934656		(limited)
p1	$=-0.00563422$	+/-	0.01637	(limited)	
p2	$=0.0434292$	+/-	0.00963522		(limited)

Cut based selection

BDT selection

A RooPlot of "X3940_M"

A RooPlot of "Tri_pionmass"

A RooPlot of "Kpi_mass"

A RooPlot of "pizero_M"

A RooPlot of "Di_pionmass"

$B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$with $\left(\Psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)$

- Interesting case:

$\mathrm{B}^{0} \rightarrow\left(\Psi(2 \mathrm{~S}) \pi^{0}\right) \pi^{-} \mathrm{K}^{+}$with $\left(\Psi(2 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}\right)$

- Interesting case :
b_MakePsi2S_M

$B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$with $\left(\Psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)$

- Interesting case :
b_MakePsi2S_M

pizero_PT

pizero_PT

Pizero_PT

pizero_PT

Pizero_PT

pizero_PT

Pizero_PT

Input variable: pizero_PT

TMVA overtraining check for classifier: BDT
pizero_PT

Pizero_PT

Input variable: pizero_PT

|nput variable: muminus_PT

Input variable: muplus_PT

pizero_PT

Pizero_PT

Input variable: pizero_PT

Input variable: muminus_PT

Input variable: muplus_PT

Input variable: psi2s_PT

A RooPlot of "b_MakePsi2S_M"

A RooPlot of "X_M"

A RooPlot of "pizero_M"

A RooPlot of "Kpi_mass"

Missing K* contribution!

A RooPlot of "Kpi_mass"

Missing K* contribution!

A RooPlot of "Di_pionmass"

Peaking structure from charged Rho meson!!!

A RooPlot of "Kpi_mass"

Missing K* contribution!

- Instead of $B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$

A RooPlot of "Di_pionmass"

Peaking structure from charged Rho meson!!!

A RooPlot of "Kpi_mass"

Missing K* contribution!

A RooPlot of "Di_pionmass"
The deacy
prefers to go via Rho meson

Peaking structure from charged Rho meson!!!

- Instead of $B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$
- Major contribution to ginal goes via : $B^{0} \rightarrow \boldsymbol{\Psi}(2 S) \rho^{-} K^{+}$with $\rho^{-} \rightarrow \pi^{0} \pi^{-}$

Missing K* contribution!

The deacy prefers to go via Rho meson

Peaking structure from charged Rho meson!!!

- Instead of $B^{0} \rightarrow\left(\Psi(2 S) \pi^{0}\right) \pi^{-} K^{+}$
- Major contribution to ginal goes via : $B^{0} \rightarrow \boldsymbol{\Psi}(2 S) \rho^{-} K^{+}$with $\rho^{-} \rightarrow \pi^{0} \pi^{-}$
- The problem is : MC without rho used for optimisation data that prefers rho!!

To summarise, we have made observation of 2 new decay modes of BO meson along with presence of signatures from exotic tetraquarks as intermediate states.

Future Plans

- For each decay mode, perform PID correction for Kaons and pions.
- Identify sources of problematic structures in the B mass distribution and remove them.
- Another task would be to measure the branching fraction of each decay mode with systematic and statistical errors with respect to a reference channel.
- We also plan for the possibility of launching an amplitude analysis for the second decay withf exotic structures $X(3940), X(4140)$ and $\Psi(4230)$.

Lot more to do!!

BACK UP

$M(J / \psi \pi+\pi-\Pi \pm K \mp)$

Range III :

Selection Cuts		
Particle	Parameter	Selection
$\mu^{ \pm}$	PROBNNMU	>0.5
	χ^{2} IP	>10
$\pi^{ \pm}$	PROBNNPI	>0.4
	p_{T}	$>400 \mathrm{MeV}$
	P	$>3200 \mathrm{MeV}$
	χ^{2} IP	>4
π^{0}	p_{T}	$>1000 \mathrm{MeV}$
$K^{ \pm}$	η	$2-5$
	P	$>3200 \mathrm{MeV}$
	PROBNNK	>0.15
	χ^{2} IP	>4
B_{0}	M $(J / \psi$ constrained $)$	$5150-5450 \mathrm{MeV}$
	χ^{2} DTF $(J / \psi$ constrained $)$	<5
	χ^{2} IP	<9
	FDS	>5

Decay II

Fit performed on J / ψ constrained B mass

- S-weights extracted from signal region.
We look for B meson signal and possibility of structures in invariant mass combinations of daughter particle.

[^0]: Minuit2Minimizer : Valid minimum - status = 0
 FVAL $=-220915.295159876056$
 Edm $=0.000329056443562910673$
 $\mathrm{Nfcn}=407$
 BYield $=46525.8$
 Vield
 lambda
 $=7527.53$
 $=66.0257$
 $=5279.53$
 $=-0.0734254$
 $=-0.00563422$
 $=0.0434292$

 | | | |
 | :--- | :--- | :--- |
 | +/- | 567.62 | (limited) |
 | +/- | 532.867 | (limited) |
 | +/- | 3.68714 | (limited) |
 | +/- | 0.998792 | (limited) |
 | +/- | $0.00934656 \quad$ (limited) | |
 | +/- | 0.01637 | (limited) |
 | +/- | $0.00963522 \quad$ (limited) | |

