

Search for Exotics in B decays at LHCb

Graduate Physics Seminar

Salil Joshi

Supervisor : **Prof. Wojciech Wislicki** Auxiliary Supervisor: **Dr. Dmytro Melnychuk**

 Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.
- Quarks : carry strong-interaction charges : 3 color dof red-blue-green and anti charges.

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.
- Quarks : carry strong-interaction charges : 3 color dof red-blue-green and anti charges.
- Color neutral hadrons :
 - **Baryons** (qqq) : proton, neutron,....
 - **Mesons** (qq) : pions, Kaons,.....

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.
- Quarks : carry strong-interaction charges : 3 color dof red-blue-green and anti charges.
- Color neutral hadrons :
 - **Baryons** (qqq) : proton, neutron,....
 - **Mesons** (qq) : pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.
- Quarks : carry strong-interaction charges : 3 color dof red-blue-green and anti charges.
- Color neutral hadrons :
 - **Baryons** (qqq) : proton, neutron,....
 - Mesons (qq) : pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.
- SU(3) structure of the gauge symmetry describing the 3 color charges produces all possible **color-singlet** combinations.

- Hadrons : composites of fractionally charged fermions - quarks (u,d,s) with baryon number B = 1/3.
- Quarks : carry strong-interaction charges : 3 color dof red-blue-green and anti charges.
- Color neutral hadrons :
 - **Baryons** (qqq) : proton, neutron,....
 - **Mesons** (qq) : pions, Kaons,.....
- Generalization to a gauge theory : Quantum Chromodynamics.
- SU(3) structure of the gauge symmetry describing the 3 color charges produces all possible color-singlet combinations.
- More complex structures?

possibilities. AA and AAA, that is, "deuces and trevs".

etc. It is assuming that the lowes

 Conventional States : states well understood phenomenologically in the Quark Model i.e. qq and qqq

Exotics

- Conventional States : states well understood phenomenologically in the Quark Model i.e. qq and qqq
- **Exotic states** : 4-5 quark states, unconventional Q no., glue balls etc....

Exotics

- Conventional States : states well understood phenomenologically in the Quark Model i.e. qq and qqq
- **Exotic states** : 4-5 quark states, unconventional Q no., glue balls etc....

Motivation for search :

• Based purely on experimental observation :

- X(3872), accidental discovery by Belle as a narrow peak in the J/ψπ⁺π⁻ invariant mass distribution
- Many other resonances such as X(3940), observed in experimental data, do not fit into conventional states with no theoretical predictions.
 - Their J^{PC} are unknown.
 - Various decay modes are un-measured.
 - Observational significance is low and need further investigations to confirm their existence.

Motivation for search :

• Based purely on experimental observation :

- X(3872), accidental discovery by Belle as a narrow peak in the J/ψπ⁺π⁻ invariant mass distribution
- Many other resonances such as X(3940), observed in experimental data, do not fit into conventional states with no theoretical predictions.
 - Their J^{PC} are unknown.
 - Various decay modes are un-measured.
 - Observational significance is low and need further investigations to confirm their existence.

• Based on theoretical predictions :

- If the X(3872) were a conventional cc̄ state, transitions to the χ_{cJ} should be very small ; in contrast to tetra-quark or molecular state.
- Measuring pionic transitions $X(3872) \rightarrow \chi_{c1} \pi^0$ could distinguish between various interpretations

Hadron Spectroscopy at LHC

Hadron Spectroscopy at LHCb

Exotic Hadrons at LHC

B decays

- B meson produced in high-energy Hadron Collisions : pp̄ and pp
- Each $b\overline{b}$ quark of a pair, hadronizes separately.
- B meson are a **b** and **u**,**d**,**s**, or c quark : **B**⁺, **B**⁰, **B**_s, and **B**_c
- B flavored hadrons decay via generation-changing processes
- Dominant decay mode of a B quark is b →cW⁻
- Forms charmed mesons or **cc** (charmonium).

My PhD work is dedicated to search for exotics in charmonimum (cc̄) sector at LHCb.

Why Charmonium?

- Have reliable predictions of expected conventional states.
- Charm : lightest 'heavy' quark m_c >> Λ_{QCD} can determine cc̄ spectrum with simple non-relativistic Q-M treatment.

- Decays of conventional cc̄ states with masses below open charm threshold m_{DD} are OZI suppressed - states are narrow and well separated.
 Above the open charm threshold OZI allowed processes dominate wider
- Above the open charm threshold OZI allowed processes dominate wider resonances but still significantly narrower than light quark states.

Why LHCb?

- Largest data sample of b and c hadrons
- Triggers optimised for final state particles $J/\Psi(1S)$ and $\Psi(2S)$.
- Dedicated computational tools available for thorough search of exotics.

Run	Years	Lum.	\sqrt{s}	$\sigma_{bar{b}}$	$\sigma_{car{c}}$	2
		$[\mathrm{fb}^{-1}]$	[TeV]	$[\mu b]$	$[\mu \mathrm{b}]$	
1	2011-12	3.0	$7,\!8$	70	1400	3
2	2015-17	3.8	13	150	2400	
2	2018	2.2	13			8

- Single arm forward spectrometer : Efficient hadronic identification. $2 < \eta < 5$
- Impact parameter resolution: $\sigma_{IP} \approx 20 \mu m$
- Momentum resolution:

• $\frac{\Delta P}{P} \sim 0.5 - 1\%$

- PID separation K , p from π :
 - $\epsilon(K \to K) \approx 95\%$ and $\epsilon(\pi \to K) \approx 5\%$ • $\epsilon(p \to p) \approx 95\%$ and $\epsilon(\pi \to p) \approx 5\%$

Tetra-Quarks

Open Charm

- Either only c or only c
 , non zero net charm content.
- T* (2870)⁰ and T* (2900)⁰
 T+^{cs0}_{cc}(3875) : ccud

Tetra-Quarks

Open Charm

- Either only c or only \overline{c} , non zero net charm content.
- $T^{*}_{cs0}(2870)^{0}$ and $T^{*}_{cs1}(2900)^{0}$ $T^{+}_{cc}(3875)$: ccud

Hidden Charm

- cc pairs, zero net charm content.
- 2 Fully charm $T_{\psi\psi}(6900)^+$: cccc $P^{\Lambda}_{\psi s}(4459)^0, T^{\theta}_{\psi s1}(4000)^+$

• Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$

- Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
- Selecting the stripping line associated with final charmonium state (in our case $J/\Psi \to \mu^+ \, \mu^-$ and other final state particles such as Kaons, pions : charged and neutral)

- Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
- Selecting the stripping line associated with final charmonium state (in our case $J/\Psi \rightarrow \mu^+ \mu^-$ and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.

- Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
- Selecting the stripping line associated with final charmonium state (in our case $J/\Psi \to \mu^+ \, \mu^-$ and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.

- Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
- Selecting the stripping line associated with final charmonium state (in our case $J/\Psi \to \mu^+ \, \mu^-$ and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.
- Once a signal is observed in the expected mass range, cuts are further tightened to improve signal significance.

- Decay : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
- Selecting the stripping line associated with final charmonium state (in our case $J/\Psi \to \mu^+ \, \mu^-$ and other final state particles such as Kaons, pions : charged and neutral)
- Running the decay reconstruction code on the data files with some pre-selection kinematic cuts and producing ntuples containing variables of interest.
- Collect data and apply stronger selection cuts at ntuple level on these stored variables to clean out background and look for signal from the decay head i.e. B meson mass.
- Once a signal is observed in the expected mass range, cuts are further tightened to improve signal significance.
- Now a fit is performed on the data with proper models for signal and background, usually gaussian for former and exponential for later.

• Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.
 - $\blacksquare \quad K^{*} \rightarrow \pi^{-} \ K^{*} \ , \ \rho \ or \ \omega \rightarrow \pi^{+} \ \pi^{-},$

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.
 - $\blacksquare \quad K^* \to \pi^- \ K^* \ , \ \rho \ or \ \omega \to \pi^+ \ \pi^-,$
- Fit is performed using **S-Plot technique** : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.
 - $\blacksquare \quad K^* \to \pi^- \ K^* \ , \ \rho \ or \ \omega \to \pi^+ \ \pi^-,$
- Fit is performed using **S-Plot technique** : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.
 - $\blacksquare \quad K^* \to \pi^- \ K^* \ , \ \rho \ or \ \omega \to \pi^+ \ \pi^-, \ldots.$
- Fit is performed using **S-Plot technique** : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.
- Use these to weigh daughter combinations.

- Let's make : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$
 - Phase space uniform reconstruction.
 - In invariant mass distribution of daughter combination : Look for exotic signatures.
 - $\blacksquare \quad K^* \to \pi^- \ K^* \ , \ \rho \ or \ \omega \to \pi^+ \ \pi^-,$
- Fit is performed using **S-Plot technique** : provide a convenient method to unfold the overall distribution of a mixed sample of events in a control variable x, allowing to keep all signal events while getting rid of all background events.
- Extract weights from events in the signal region.
- Use these to weigh daughter combinations.
- If decay occur via exotic / resonance state : structures observed as enhancements in intermediate particle mass combinations.

First Analysis : $B^0 \rightarrow J/\psi(1S) \pi^+ \pi^- \pi^- K^+$

- $B^0 \rightarrow J/\psi(1S) \pi^+\pi^-\pi^-K^+$
 - $X^{\pm} \rightarrow \psi(3770)\pi^{\pm}$ (M. Ablikim et al. (BESIII Collaboration) Phys. Rev. D 100, 032005)
 - New decay mode of B⁰ (excluding resonant contribution)
 - General Idea : Possible observation of either new or previously un-confirmed exotic resonances and decay modes.
- We are interested in structures in :
 - $\mathbf{Y} = \mathbf{m} (\mathbf{J}/\mathbf{\psi}\mathbf{\pi}^+\mathbf{\pi}^-)$
 - X = m (J/ψπ⁺π⁻) π[±]
- Cut based selection is applied on the reconstructed data.

Y mass range		
Particle	Range	
$\psi(2S)$	$< 3726 { m ~MeV}$ (I)	
Y (3770, 3823,)	3726 - 3990 MeV (II)	
Y (4040, 4160, 4230)	> 3990 MeV (III)	

- Fit performed on J/ψ constrained B mass
- S-weights are used to fit J/ψ constrained Y and X mass.
- We look for B meson signal and possibility of structures in invariant mass combinations of daughter particle.

Range I : B0 \rightarrow ($\psi(2S) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$

Range I : B0 \rightarrow ($\psi(2S) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$

Range II : B0 \rightarrow (ψ (3823) \rightarrow (J/ ψ (1S) \rightarrow μ + μ -) π + π -) π - K+

- Range I : B0 \rightarrow ($\psi(2S) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu)\pi + \pi)\pi K +$
- Range II : B0 \rightarrow (ψ (3823) \rightarrow (J/ ψ (1S) \rightarrow μ + μ) π + π) π K+
 - $B0 \rightarrow (\chi_{c1}(3872) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu)\pi + \pi)\pi K +$

Range I : B0 → ($\psi(2S)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ Range II : B0 → ($\psi(3823)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ B0 → ($\chi_{c1}(3872)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ B0 → ($\chi_{c0}(3915)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+

Range I: B0 → ($\psi(2S)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ Range II: B0 → ($\psi(3823)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ B0 → ($\chi_{c1}(3872)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ B0 → ($\chi_{c0}(3915)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+ B0 → ($\chi_{c2}(3930)$ → (J/ $\psi(1S)$ → μ + μ -) π + π -) π - K+

Range I: B0 \rightarrow ($\psi(2S) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$ Range II : B0 \rightarrow (ψ (3823) \rightarrow (J/ ψ (1S) \rightarrow μ + μ -) π + π -) π - K+ $B0 \rightarrow (\chi_{c1}(3872) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$ $B0 \rightarrow (\chi_{c0}(3915) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$ $B0 \rightarrow (\chi_{c2}(3930) \rightarrow (J/\psi(1S) \rightarrow \mu + \mu -)\pi + \pi -)\pi - K +$ Range III :B0 \rightarrow (ψ (4160) \rightarrow (J/ ψ (1S) \rightarrow μ + μ -) π + π -) π - K+

Second Analysis : $B^0 \rightarrow J/\psi(1S)\pi^+\pi^-\pi^0\pi^-K^+$

- $B^0 \to J/\psi(1S)\pi^+\pi^-\pi^0\pi^-K^+$
 - X (3940) → J/ψω(782) in B⁺→ ωJ/ψK⁺ (BELLE/BABAR)
 - $\circ \Psi(4230) \rightarrow J/\psi \pi^+ \pi^- \pi^0$
 - New decay mode of B⁰

$(J/\psi\pi^+\pi^-)$ Mass		
Decay	Range	
$B^0 \rightarrow \psi(2S) \pi^0 \pi^- K^+$	3680 - 3700 MeV	
$B^0 \to J/\psi(1S)\pi^+\pi^-\pi^0\pi^-K^+$	< 3680 MeV	
	$> 3700 { m MeV}$	

- 2 different reconstruction :
 - First :

 $\mathsf{B}^0 \to (J/\psi\pi^+\pi^-\pi^0)\pi^+ \mathsf{K}^-$

• Second :

 $\mathsf{B}^0 \to (J/\psi(\omega \to \pi^{\scriptscriptstyle +}\,\pi^{\scriptscriptstyle -}\,\pi^0\,))\;\pi^{\scriptscriptstyle +}\;\mathsf{K}^{\scriptscriptstyle -}$

 $\circ \quad \text{Resolved Pions used i.e. } \pi^0 \to \gamma \gamma$

Additional Cuts		
Particle	Parameter	Selection
ω	$M(\pi^+\pi^-\pi^0)$	742 - 822 MeV

Events / (3 MeV)

Third Analysis : $B^0 \rightarrow (\psi(2S)\pi^0)\pi^-K^+$

- $J/\psi\pi^+\pi^-\pi^0$ can also occur via $(\psi(2S) \rightarrow J/\psi\pi^+\pi^-)\pi^0$
- Earlier studies veto out the contribution but we observed significant B0 signal.
- New Channel : $B^0 \rightarrow \psi(2S)\pi^0 \pi^+ K^-$ with $\psi(2S) \rightarrow (J/\psi\pi^+\pi^-)$

- To have an independent measurement of new observed B0 decay, we reconstructed B⁰→ψ (2S)π⁰π⁺ K⁻ with ψ(2S) → μ⁺μ⁻
- Signal was observed and will be included in the measurement of the branching fraction of the B decay.

- Producing MC events has a cost: 6000 Euro per 10M generic b events
- We asked : 180M in total, yet

Let's summarise.....

We have observed 3 new decay modes of B meson and plan to measure their branching fractions.

$B^0 \rightarrow (J/\psi(1S) \ \pi^+ \ \pi^-)\pi^- \ K^+$

- Use MC to enhance observation of $\chi_{c0}(3915)$ and $\chi_{c2}(3930)$ decaying to $J/\psi\pi^+\pi^-$
- Possible new decay mode or observation of a new Z state.
- $B^0 \rightarrow (J/\psi \pi^+ \pi^- \pi^0 \)\pi^+ K^-$
 - Observed structure around masses :
 - X (3940)→ J/ψω
 - X (4160) \rightarrow J/ $\psi\omega$
 - $\psi(4230) \rightarrow J/\psi \pi^+ \pi^- \pi^0$

$B^0 \rightarrow (\psi(2S)\pi^0)\pi^- K^+$

Possible observation of exotic resonances.

• But how much "right" signal is there?

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis : The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis : The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.
- Vast amounts of data characterized by multiple variables : Automated algorithms for learning from data Machine learning

- But how much "right" signal is there?
- Are the cuts applied optimised for enhancing just the decay of "interest"?
- Identify events that are rare and obscured by the wide variety of processes that can mimic the "right" signal.
- Multivariate Analysis : The aim is to find patterns and correlations between several variables simultaneously—allowing for a much deeper, more complex understanding of a given scenario.
- Vast amounts of data characterized by multiple variables : Automated algorithms for learning from data Machine learning
- **Supervised learning** : classifier is presented only with training events for which it knows "discriminating variables" and "class label".

• **Decision trees** employ sequential cuts to perform the classification task.

- **Decision trees** employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.

- **Decision trees** employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.

- **Decision trees** employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
 - **Signal : Monte Carlo** data for the signal
 - **Background :** Sideband events excluding signal region in raw data
 - Discriminating Variables

- Decision trees employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
 - **Signal : Monte Carlo** data for the signal
 - Background : Sideband events excluding signal region in raw data
 - Discriminating Variables
- Difficult to make a very good discriminant, but simpler, more error-prone (high bias) i.e. Weak Classifiers.

- **Decision trees** employ sequential cuts to perform the classification task.
- At each step in the sequence, the best cut is searched for and used to split data.
- This process is continued recursively on the resulting partitions until a given terminal criterion is satisfied.
- The training data set containing signal and background events.
 - **Signal : Monte Carlo** data for the signal
 - Background : Sideband events excluding signal region in raw data
 - Discriminating Variables
- Difficult to make a very good discriminant, but simpler, more error-prone (high bias) i.e. Weak Classifiers.
- **Boosting** : goal is to combine weak classifiers into a new, more stable one, with a smaller error rate and better performance

• Reconstruct MC data for each year on the same code as detector data (keep preselections same).

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .
- Randomisation is important !!!

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.
- Variable selection : No tricks!

- Reconstruct MC data for each year on the same code as detector data (keep preselections same).
- Extract pure signal by using variable BKGCAT = 0.
- Extract sideband from reconstructed data (each year): 5150 < B mass > 5450
- Signal region : 5200 < B mass < 5400
- Divide both into 2 data sets : Training and Testing .
- Randomisation is important !!!
- Applying various machine learning algorithms, easy!
- The tediously lengthy part : design and optimisation of the model itself, and how to pick the best one.
- Variable selection : No tricks!
- How to optimise classifier ? : No tricks!

0.2 0.4 0.6 0.8 1 muminus_PROBNNMU

muplus PROBNNMU

Kminus_PROBNNK

- Apply training on whole data set, each run separately.
- "Friend" this training output event by event with data.
- New variable produced : BDT variable associated with every event.
- Values vary between : 0 and 1
• Figure of Merit or Signal Significance Fom = $S/\sqrt{(S+B)}$

- Figure of Merit or Signal Significance Fom = $S/\sqrt{(S+B)}$
- Apply a cut : BDT > x

• Figure of Merit or Signal Significance

Fom = $S/\sqrt{(S+B)}$

- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - Background : exponential

• Figure of Merit or Signal Significance

Fom = $S/\sqrt{(S+B)}$

- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - Background : exponential
- Extract signal and background events and evaluate FoM at different x values.

• Figure of Merit or Signal Significance

Fom = $S/\sqrt{(S+B)}$

- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - Background : exponential
- Extract signal and background events and evaluate FoM at different x values.
- Optimum working point : BDT value corresponding to maximum FoM.

RUN

- **Figure of Merit or Signal Significance**
 - Fom = S/ $\sqrt{(S+B)}$
- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - **Background** : exponential
- Extract signal and background events and evaluate FoM at different x values.
- Optimum working point : BDT value corresponding to maximum FoM.

RUN

- **Figure of Merit or Signal Significance**
 - Fom = $S/\sqrt{(S+B)}$
- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - **Background : exponential**
- Extract signal and background events and evaluate FoM at different x values.
- Optimum working point : BDT value corresponding to maximum FoM.
- Next step : fit using SPlot and extract information on intermediate particles.

RUN

- **Figure of Merit or Signal Significance**
 - Fom = $S/\sqrt{(S+B)}$
- Apply a cut : BDT > x
- Fit invariant mass of B meson :
 - Signal : Johnson function
 - **Background : exponential**
- Extract signal and background events and evaluate FoM at different x values.
- Optimum working point : BDT value corresponding to maximum FoM.
- Next step : fit using SPlot and extract information on intermediate particles.

But first, lets look at B0 invariant mass.....

BDT cut

• $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$ with $\omega \rightarrow \pi^+\pi^-\pi^0$

- $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$ with $\omega \rightarrow \pi^+\pi^-\pi^0$
- First guess : Mis-Identification between K⁺/ π^+ and K⁻/ π^- :

- $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$ with $\omega \rightarrow \pi^+\pi^-\pi^0$
- First guess : Mis-Identification between K⁺/ π⁺ and K⁻/ π⁻ :
 - Final state : $J/\psi \pi^+ \pi^- \pi^0 \pi^+ K^-$
 - One particle Mis-ID
 - Two particle Mis-ID

- $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$ with $\omega \rightarrow \pi^+\pi^-\pi^0$
- First guess : Mis-Identification between K⁺/ π^+ and K⁻/ π^- :
 - Final state : $J/\psi \pi^+ \pi^- \pi^0 \pi^+ K^-$
 - One particle Mis-ID
 - Two particle Mis-ID
- Reconstruction in Rapid-Sim.

2500

2000

1500

1000

500

htemp

10708

5296

190.2

Entries

Mean

5600

5700 reduced b B M JPcon

Entries

Std Dev

Mean

htemp

94001

5307

191.8

Std Dev

- $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$ with $\omega \rightarrow \pi^+\pi^-\pi^0$
- First guess : Mis-Identification between K⁺/ π^+ and K⁻/ π^- :
 - Final state : J/ψ π⁺ π⁻ π⁰ π⁺ K⁻
 - One particle Mis-ID
 - Two particle Mis-ID
- Reconstruction in Rapid-Sim.
- Only tight PID cuts not enough.....

reduced b B M JPcon

Results : $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$

A RooPlot of "reduced_b_B_M_JPcon"

A RooPlot of "X3940_M"

Results : $B^0 \rightarrow (J/\psi \ \omega)\pi^+K^-$

A RooPlot of "reduced_b_B_M_JPcon"

A RooPlot of "X3940_M"

Cut based selectionBDT selection $M(J/\psi\pi+\pi-\pi 0)$ A RooPlot of "X3940_M" $M(J/\psi\pi+\pi-\pi 0)$ $M(J/\psi\pi+\pi-\pi 0)$ $M(J/\psi\pi+\pi-\pi 0)$ $M(J/\psi\pi+\pi-\pi 0)$ $M(J/\psi\pi+\pi 0)$ </t

 $B^0 \rightarrow (\psi(2S)\pi^0)\pi^-K^+ \text{ with } (\psi(2S) \rightarrow \mu^+ \mu^-)$

• Interesting case :

$B^0 \rightarrow (\psi(2S)\pi^0)\pi^-K^+ \text{ with } (\psi(2S) \rightarrow \mu^+ \mu^-)$

$B^0 \rightarrow (\psi(2S)\pi^0)\pi^-K^+ \text{ with } (\psi(2S) \rightarrow \mu^+ \mu^-)$

÷

/ Np (N/L)

Pizero_PT

Pizero_PT

A RooPlot of "psi2s_M"

A RooPlot of "pizero_M"

Missing K* contribution!

Missing K* contribution!

Peaking structure from charged Rho meson!!!

600

700

800 Di_pionmass (MeV)

300

400

500

Peaking structure from charged Rho meson!!!

• Instead of $B^0 \rightarrow (\psi(2S)\pi^0) \pi^-K^+$

- Instead of $B^0 \rightarrow (\psi(2S)\pi^0) \pi^-K^+$
- Major contribution to ginal goes via : $B^0 \rightarrow \psi(2S) \rho^- K^+$ with $\rho^- \rightarrow \pi^0 \pi^-$

- Instead of $B^0 \rightarrow (\psi(2S)\pi^0) \pi^-K^+$
- Major contribution to ginal goes via : $B^0 \rightarrow \psi(2S) \rho^- K^+$ with $\rho^- \rightarrow \pi^0 \pi^-$
- The problem is : MC without rho used for optimisation data that prefers rho!!

To summarise, we have made observation of 2 new decay modes of B0 meson along with presence of signatures from exotic tetraquarks as intermediate states.

Future Plans

- For each decay mode, perform PID correction for Kaons and pions.
- Identify sources of problematic structures in the B mass distribution and remove them.
- Another task would be to measure the branching fraction of each decay mode with systematic and statistical errors with respect to a reference channel.
- We also plan for the possibility of launching an amplitude analysis for the second decay withf exotic structures X(3940), X(4140) and ψ (4230).

Lot more to do!!

BACK UP
	Selection Cuts	
Particle	Parameter	Selection
μ^{\pm}	PROBNNMU	> 0.5
	χ^2 IP	> 10
π^{\pm}	PROBNNPI	> 0.4
	p_T	$> 400 { m ~MeV}$
	Р	$> 3200 { m ~MeV}$
K^{\pm}	η	2 - 5
	Р	$> 3200 { m ~MeV}$
	PROBNNK	> 0.15
B_0	M $(J/\psi \text{ constrained})$	5200 - 5350 MeV
	χ^2 DTF (J/ψ constrained)	< 5
	χ^2 IP	< 9
	FDS	> 5

Decay I :

	Pre-Selection Cu	
Particle	Parameter	Selection
μ^{\pm}	p_T	$> 550 { m MeV}$
J/ψ	$M(\mu^+\mu^-)$	3056 - 3136 MeV
π^{\pm}	p_T	$> 300 \mathrm{MeV}$
Y ($\psi(3770)$)	AM	3500-4500 MeV
X $(Z_c(4200))$	М	< 5000 MeV
B_0	BPVLTIME	> 0.25 ps
	M	4950 - 5650 MeV

	Selection Cuts	
Particle	Parameter	Selection
μ^{\pm}	PROBNNMU	> 0.5
	χ^2 IP	> 10
π^{\pm}	PROBNNPI	> 0.4
	p_T	$> 400 { m MeV}$
	P	$> 3200 { m ~MeV}$
	χ^2 IP	> 4
π^0	p _T	> 1000 MeV
K^{\pm}	η	2 - 5
	Р	$> 3200 { m MeV}$
	PROBNNK	> 0.15
	χ^2 IP	> 4
<i>B</i> ₀	M $(J/\psi \text{ constrained})$	5150 - 5450 MeV
	χ^2 DTF (J/ψ constrained)	< 5
	χ^2 IP	< 9
	FDS	> 5

Decay II

- Fit performed on J/ψ constrained B mass
- S-weights extracted from signal region.
- We look for B meson signal and possibility of structures in invariant mass combinations of daughter particle.