Asymptotic Safety and the Litim Sannino Model

Daniele Rizzo

In collaboration with

Daniel Litim

During my visit at

Sussex University Brighton, UK

Graduate Seminar NCBJ

Legend

Legend

Simple Slide:

understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

Legend

Simple Slide:

understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

Technical Slide:
this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

Legend

Simple Slide:

understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

Technical Slide:

this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

Just kidding!!!!

It will never really be technical, but there is some "calculus 0 " related material I hope you all remember.

Legend

Simple Slide:

understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

$$
\text { e.g. } \epsilon^{3}<\epsilon^{2} \text { if } \epsilon<1
$$

Technical Slide:

this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

Just kidding!!!!

It will never really be technical, but there is some "calculus 0 " related material I hope you all remember.

Legend

Simple Slide:

understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

$$
\text { e.g. } \epsilon^{3}<\epsilon^{2} \text { if } \epsilon<1
$$

Technical Slide:
this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

Just kidding!!!!

It will never really be technical, but there is some "calculus 0 " related material I hope you all remember.

How to build a model of particles?

How to build a model of particles?

Gauge Symmetry

How to build a model of particles?

Gauge Symmetry

Fermionic Fields

How to build a model of particles?

Gauge Symmetry

Fermionic Fields

Interactions between Fields

How to build a model of particles?

Fermionic Fields

Interactions between Fields

$$
\mathcal{L}_{\text {int }} \supset \bar{\psi} H \psi
$$

How to build a model of particles?

Gauge Symmetry

Fermionic Fields

Interactions between Fields

$$
\mathcal{L}_{\text {int }} \supset \bar{\psi} H \psi
$$

Running of Coupling Constants

Running of Coupling Constants

In quantum field theory
coupling constants are not constant, they depend on the energy scale of the process under consideration

Running of Coupling Constants

Beta Function

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration

$$
\beta(g) \equiv \frac{d g}{d \log \mu}
$$

Running of Coupling Constants

Beta Function

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration

$$
\beta(g) \equiv \frac{d g}{d \log \mu}
$$

Running of Coupling Constants

Beta Function

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration

$$
\beta(g) \equiv \frac{d g}{d \log \mu}
$$

Fine structure constant in QCD

Running of Coupling Constants

Beta Function

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration - $\beta(g) \equiv \frac{d g}{d \log \mu}$

At low energies, the interaction between quarks and gluons is incredibly strong

Fine structure constant in QCD

Running of Coupling Constants

Beta Function

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration

At low energies, the interaction between quarks and gluons is incredibly strong

Fine structure constant in QCD

$$
-\beta(g) \equiv \frac{d g}{d \log \mu}
$$

-

At high energies, quarks and gluons do not interact

Perturbation Theory

Perturbation Theory

$$
H=H_{0}+\lambda H_{1}
$$

Perturbation Theory

$$
H=H_{0}+\lambda H_{1}
$$

Full Hamiltonian
of the system
∇
We do not know how to solve the eigenvalue problem for this Hamiltonian

Perturbation Theory

$$
H=H_{0}+\lambda H_{1}
$$

4

Full Hamiltonian of the system
∇
We do not know how to solve the eigenvalue problem for this Hamiltonian

Part of the Hamiltonian for which we know how to solve the eigenvalue problem

$$
H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle
$$

Perturbation Theory

. $H=H_{0}+\lambda H_{1}$

Full Hamiltonian of the system
∇
We do not know how to solve the eigenvalue problem for this Hamiltonian

Part of the Hamiltonian for which we know how to solve the eigenvalue problem
∇

$$
H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle
$$

Part of the Hamiltonian that we do not understand and so we do not know how to solve the eigenvalue problem

Perturbation

Perturbation Theory

A small parameter

$$
H=H_{0}+\lambda H_{1}
$$

$$
\lambda<1
$$

Full Hamiltonian of the system
∇
We do not know how to solve the eigenvalue problem for this Hamiltonian

Part of the Hamiltonian for which we know how to solve the eigenvalue problem
∇

$$
H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle
$$

Part of the Hamiltonian that we do not understand and so we do not know how to solve the eigenvalue problem

Perturbation

Perturbation Theory

A small parameter

$$
H=H_{0}+\lambda H_{1}
$$

Full Hamiltonian of the system
∇
We do not know how to solve the eigenvalue problem for this Hamiltonian

Part of the Hamiltonian for which we know how to solve the eigenvalue problem

What is the solution of the eigenvalue problem for the full Hamiltonian?

$$
H|n\rangle=E_{n}|n\rangle
$$

Perturbation Theory

$$
H=H_{0}+\lambda H_{1} \quad H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle \quad H|n\rangle=E_{n}|n\rangle
$$

Perturbation theory is the statement that the solution of the eigenvalue problem for the full Hamiltonian is given by a power series in the small parameter:

The eigenvectors are: $\quad|n\rangle=\left|n^{(0)}\right\rangle+\lambda\left|n^{(1)}\right\rangle+\lambda^{2}\left|n^{(2)}\right\rangle+\ldots$
The eigenvalues are: $\quad E_{n}=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots$

Perturbation Theory

$$
H=H_{0}+\lambda H_{1} \quad H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle \quad H|n\rangle=E_{n}|n\rangle
$$

Perturbation theory is the statement that the solution of the eigenvalue problem for the full Hamiltonian is given by a power series in the small parameter:

The eigenvectors are: $|n\rangle=\left|n^{(0)}\right\rangle+\lambda\left|n^{(1)}\right\rangle+\lambda^{2}\left|n^{(2)}\right\rangle+\ldots$
The eigenvalues are: $\quad E_{n}=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots$

We know these from the unperturbed problem

Perturbation Theory

$$
H=H_{0}+\lambda H_{1} \quad H_{0}\left|n^{(0)}\right\rangle=E_{n}^{(0)}\left|n^{(0)}\right\rangle \quad H|n\rangle=E_{n}|n\rangle
$$

Perturbation theory is the statement that the solution of the eigenvalue problem for the full Hamiltonian is given by a power series in the small parameter:

The eigenvectors are: $|n\rangle=\left|n^{(0)}\right\rangle+\lambda\left|n_{\Delta}^{(1)}\right\rangle+\lambda^{2}\left|n^{(2)}\right\rangle+\ldots$
The eigenvalues are: $\quad E_{n}=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\ldots$

We know these from the unperturbed problem

There are "simple" formulas to systematically compute all these

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter being played by the Planck constant

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP EXPANSION

 being played by the Planck constant
Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP
 EXPANSION

 being played by the Planck constantAlso Beta functions can be computed in a loop expansion

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots
$$

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP
 EXPANSION

 being played by the Planck constantAlso Beta functions can be computed in a loop expansion

$$
\begin{aligned}
& \beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots \\
& \begin{array}{c}
1 \text {-loop } \\
\text { coefficient }
\end{array}
\end{aligned}
$$

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP
 EXPANSION

 being played by the Planck constantAlso Beta functions can be computed in a loop expansion

$$
\begin{gathered}
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots \\
\begin{array}{c}
\text { 1-loop } \\
\text { coefficient }
\end{array} \quad \begin{array}{c}
\text { 2-loop } \\
\text { coefficient }
\end{array}
\end{gathered}
$$

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP

EXPANSION being played by the Planck constant

Also Beta functions can be computed in a loop expansion

$$
\begin{gathered}
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots \\
\begin{array}{c}
\text { 1-loop } \\
\text { coefficient }
\end{array} \quad \begin{array}{c}
\text { 2-loop } \\
\text { coefficient }
\end{array} \begin{array}{c}
\text { 3-loop } \\
\text { coefficient }
\end{array}
\end{gathered}
$$

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP
 EXPANSION

 being played by the Planck constantAlso Beta functions can be computed in a loop expansion

$$
\begin{array}{r}
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots \\
\begin{array}{c}
\text { 1-loop } \\
\text { coefficient }
\end{array} \quad \begin{array}{c}
\text { 2-loop } \\
\text { coefficient }
\end{array} \underset{\text { 3-loop }}{\text { coefficient }} \quad \begin{array}{c}
\text { 4-loop } \\
\text { coefficient }
\end{array}
\end{array}
$$

Asymptotic Behaviors

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}
$$

Asymptotic Behaviors

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}
$$

Landau pole

Asymptotic Behaviors

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}
$$

Landau pole

Asymptotic freedom

Asymptotic Safety

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}
$$

Asymptotic Safety

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}
$$

There is a specific value $g^{*}=-B / A$

$$
\beta\left(g^{*}\right)=0
$$

Asymptotic Safety

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}
$$

There is a specific value $g^{*}=-B / A$
$\beta\left(g^{*}\right)=0$

Fixed Point!

Asymptotic Safety

$$
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}
$$

There is a specific value $g^{*}=-B / A$

Fixed Point!

Asymptotic safety

The Litim-Sannino (LiSa) Model

The Litim-Sannino (LiSa) Model

Gauge $F_{\mu \nu}^{a}\left(a=1, \ldots, N_{C}^{2}-1\right)$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Gauge $\quad F_{\mu \nu}^{a}\left(a=1, \ldots, N_{C}^{2}-1\right)$
Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Gauge $\quad F_{\mu \nu}^{a}\left(a=1, \ldots, N_{C}^{2}-1\right)$
Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$
Scalars $\quad H \in N_{F} \times N_{F}$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Gauge $\quad F_{\mu \nu}^{a}\left(a=1, \ldots, N_{C}^{2}-1\right)$
Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$
Scalars $\quad H \in N_{F} \times N_{F}$

The Lagrangian of the model: (Draw diagrams)

$$
\begin{aligned}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+ & \operatorname{Tr}\left(\partial_{\mu} H^{\dagger} \partial^{\mu} H\right)+\operatorname{Tr}(\bar{Q} i \not D Q) \\
& -y \operatorname{Tr}\left(\bar{Q}_{L} H Q_{R}+\bar{Q}_{R} H^{\dagger} Q_{L}\right)-u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}-v\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
\end{aligned}
$$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Veneziano parameter

$$
-\epsilon \equiv \frac{N_{F}}{N_{C}}-\frac{11}{2}
$$

$$
-\frac{11}{2}<\epsilon<+\infty
$$

Scalars $\quad H \in N_{F} \times N_{F}$

The Lagrangian of the model:

$$
\begin{aligned}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+ & \operatorname{Tr}\left(\partial_{\mu} H^{\dagger} \partial^{\mu} H\right)+\operatorname{Tr}(\bar{Q} i \not D Q) \\
& -y \operatorname{Tr}\left(\bar{Q}_{L} H Q_{R}+\bar{Q}_{R} H^{\dagger} Q_{L}\right)-u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}-v\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
\end{aligned}
$$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Veneziano
parameter

$$
-\epsilon \equiv \frac{N_{F}}{N_{C}}-\frac{11}{2}
$$

Gauge $F_{\mu \nu}^{a}\left(a=1, \ldots, N_{C}^{2}-1\right)$

$$
0<\epsilon \ll 1
$$

Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$
Scalars $\quad H \in N_{F} \times N_{F}$

The Lagrangian of the model:

$$
\begin{aligned}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+ & \operatorname{Tr}\left(\partial_{\mu} H^{\dagger} \partial^{\mu} H\right)+\operatorname{Tr}(\bar{Q} i \not D Q) \\
& -y \operatorname{Tr}\left(\bar{Q}_{L} H Q_{R}+\bar{Q}_{R} H^{\dagger} Q_{L}\right)-u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}-v\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
\end{aligned}
$$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Veneziano
parameter

- $\epsilon \equiv \frac{N_{F}}{N_{C}}-\frac{11}{2}$
$0<\epsilon \ll 1$

Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$
Scalars $\quad H \in N_{F} \times N_{F}$
The couplings in the theory are

$$
(g, y, u, v)
$$

The Lagrangian of the model:
$\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu} \not \subset \operatorname{Tr}\left(\partial_{\mu} H^{\dagger} \partial^{\mu} H\right)+\operatorname{Tr}(\bar{Q} i \not D Q)$

$$
-y \operatorname{Tr}\left(\bar{Q}_{L} H Q_{R}+\bar{Q}_{R} H^{\dagger} Q_{L}\right)-u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}-\stackrel{\nabla}{v}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

Litim, Sannino (2014)

The Litim-Sannino (LiSa) Model

Veneziano
parameter

- $\epsilon \equiv \frac{N_{F}}{N_{C}}-\frac{11}{2}$
$0<\epsilon \ll 1$

Fermions $Q_{i}\left(i=1, \ldots, N_{F}\right)$
AT THE FP THE WHOLE MODEL DEPENDS ONLY ON
Scalars $\quad H \in N_{F} \times N_{F}$

The Lagrangian of the model:

THE VENEZIANO PARAMETER

The couplings in the theory are

$$
(g, y, u, v)
$$

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu} \not \uparrow \operatorname{Tr}\left(\partial_{\mu} H^{\dagger} \partial^{\mu} H\right)+\operatorname{Tr}(\bar{Q} i \not D Q)
$$

$$
-y \operatorname{Tr}\left(\bar{Q}_{L} H Q_{R}+\bar{Q}_{R} H^{\dagger} Q_{L}\right)-u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}-\stackrel{v}{v}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

Litim, Sannino (2014)

Perturbation Theory in LiSa

The β functions are obtained in perturbation theory

$$
\beta_{g}=\ldots \quad \beta_{y}=\ldots \quad \beta_{u}=\ldots \quad \beta_{v}=\ldots
$$

Perturbation Theory in LiSa

The β functions are obtained in perturbation theory

$$
\beta_{g}=\ldots \quad \beta_{y}=\ldots \quad \beta_{u}=\ldots \quad \beta_{v}=\ldots
$$

We will always consider loop expansions with the β function of the gauge at one extra loop level then the other couplings:
1-0-0
2-1-1
3-2-2
4-3-3

Perturbation Theory in LiSa

The β functions are obtained in perturbation theory

$$
\beta_{g}=\ldots \quad \beta_{y}=\ldots \quad \beta_{u}=\ldots \quad \beta_{v}=\ldots
$$

We will always consider loop expansions with the β function of the gauge at one extra loop level then the other couplings:

∇

1-0-0 2-1-1 3-2-2 4-3-3

Perturbation Theory in LiSa

The β functions are obtained in perturbation theory

$$
\beta_{g}=\ldots \quad \beta_{y}=\ldots \quad \beta_{u}=\ldots \quad \beta_{v}=\ldots
$$

We will always consider loop expansions with the β function of the gauge at one extra loop level then the other couplings:
1-0-0
2-1-1
3-2-2
4-3-3

Perturbation Theory in LiSa

The β functions are obtained in perturbation theory

$$
\beta_{g}=\ldots \quad \beta_{y}=\ldots \quad \beta_{u}=\ldots \quad \beta_{v}=\ldots
$$

We will always consider loop expansions with the β function of the gauge at one extra loop level then the other couplings:

$1-0-0^{2}$

$$
2-1-1
$$

$$
3-2-2
$$

$$
4-3-3
$$

Perturbation Theory in LiSa: 1-0-0

$$
\begin{aligned}
& \beta_{g}=\frac{4}{3} \epsilon g^{2} \\
& \beta_{y}=0 \\
& \beta_{u}=0 \\
& \beta_{v}=0
\end{aligned}
$$

Perturbation Theory in LiSa: 1-0-0

$$
\begin{aligned}
& \beta_{g}=\frac{4}{3} \epsilon g^{2} \\
& \beta_{y}=0 \\
& \beta_{u}=0 \\
& \beta_{v}=0
\end{aligned}
$$

$$
g^{*} \stackrel{\downarrow}{=} 0
$$

Perturbation Theory in LiSa: 1-0-0

$$
\begin{aligned}
& \beta_{g}=\frac{4}{3} \epsilon g^{2} \\
& \beta_{y}=0 \\
& \beta_{u}=0 \\
& \beta_{v}=0
\end{aligned}
$$

$$
g^{*} \stackrel{\downarrow}{=} 0
$$

BORING

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g]
\end{aligned}
$$

$$
\beta_{u}=0
$$

$$
\beta_{v}=0
$$

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g]
\end{aligned}
$$

$$
\beta_{u}=0
$$

$$
\beta_{v}=0
$$

$$
y^{*}=\frac{6 g^{*}}{13+2 \epsilon} \approx \frac{6}{13} g^{*}
$$

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} \frac{6}{13} g\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g]
\end{aligned}
$$

$$
\beta_{u}=0
$$

$$
\beta_{v}=0
$$

$$
y^{*}=\frac{6 g^{*}}{13+2 \epsilon} \approx \frac{6}{13} g^{*}
$$

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} \frac{6}{13} g\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g] \quad g^{*}=\frac{26}{57} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& \beta_{u}=0 \\
& \beta_{v}=0
\end{aligned}
$$

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} \frac{6}{13} g\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g] \Delta g^{*}=\frac{26}{57} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
\beta_{u}=0
$$

$$
\beta_{v}=0
$$

$$
y^{*}=\frac{6 g^{*}}{13+2 \epsilon} \approx \frac{6}{13} g^{*}=\frac{4}{19} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

Perturbation Theory in LiSa: 2-1-0

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g] \\
& \beta_{u}=0
\end{aligned}
$$

$$
\beta_{v}=0
$$

$$
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \quad y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

Perturbation Theory in LiSa: 2-1-1

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g] \\
& \beta_{u}=-2\left(\frac{11}{2}+\epsilon\right) y^{2}+4 u(y+2 u) \\
& \beta_{v}=12 u^{2}+4 v(v+4 u+y)
\end{aligned}
$$

$$
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \quad y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

Perturbation Theory in LiSa: 2-1-1

$$
\begin{aligned}
& \beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y\right] \\
& \beta_{y}=y[(13+2 \epsilon) y-6 g] \\
& \beta_{u}=-2\left(\frac{11}{2}+\epsilon\right) y^{2}+4 u(y+2 u) \\
& \beta_{v}=12 u^{2}+4 v(v+4 u+y)
\end{aligned}
$$

$$
\begin{array}{ll}
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
u^{*}=0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{array}
$$

Perturbation Theory in LiSa: 3-2-2

$\beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y+\frac{701}{6} g^{2}-\frac{3267}{8} g y+605 y^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right]$

$$
\begin{array}{ll}
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
u^{*}=0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{array}
$$

Perturbation Theory in LiSa: 3-2-2

$\beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y+\frac{701}{6} g^{2}-\frac{3267}{8} g y+605 y^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right]$

$$
\begin{array}{ll}
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
u^{*}=0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{array}
$$

Perturbation Theory in LiSa: 3-2-2

$$
\beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y+\frac{701}{6} g^{2}-\frac{3267}{8} g y+605 y^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right]
$$

$$
\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
\begin{array}{ll}
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
u^{*}=0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) & v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{array}
$$

Perturbation Theory in LiSa: 3-2-2

$$
\beta_{g}=g^{2}\left[\frac{4}{3} \epsilon+\left(25+\frac{26}{3} \epsilon\right) g-2\left(\frac{11}{2}+\epsilon\right)^{2} y+\frac{701}{6} g^{2}-\frac{3267}{8} g y+605 y^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right]
$$

UNIVERSALITY OF THE LEADING ORDER

$$
g^{*}=0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
y^{*}=0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
u^{*}=0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

Perturbation Theory in LiSa: 2-1-1

$$
g^{*}=+0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
y^{*}=+0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
u^{*}=+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

Perturbation Theory in LiSa: 2-1-1

$$
\begin{aligned}
& g^{*}=+0.456 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& y^{*}=+0.211 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& u^{*}=+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& 2-1-1
\end{aligned}
$$

Perturbation Theory in LiSa: 3-2-2

$$
g^{*}=+0.456 \epsilon+0.781 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

$$
y^{*}=+0.211 \epsilon+0.508 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

$$
u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

$$
v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

$$
3-2-2
$$

Perturbation Theory in LiSa: 4-3-3

$$
g^{*}=+0.456 \epsilon+0.781 \epsilon^{2}+6.610 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

$$
y^{*}=+0.211 \epsilon+0.508 \epsilon^{2}+3.322 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

$$
u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

$$
v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
$$

$$
4-3-3
$$

Conformal Window

$$
\begin{aligned}
& g^{*}=+0.456 \epsilon+0.781 \epsilon^{2}+6.610 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& y^{*}=+0.211 \epsilon+0.508 \epsilon^{2}+3.322 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

Conformal Window

$$
\begin{aligned}
& g^{*}=+0.456 \epsilon+0.781 \epsilon^{2}+6.610 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& y^{*}=+0.211 \epsilon+0.508 \epsilon^{2}+3.322 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

Let us be a little bit more quantitative and ask the questions:

- For what values of the Veneziano parameter do we actually have a fixed point?
- What can cause a fixed point to disappear?

Conformal Window

$$
\begin{aligned}
& g^{*}=+0.456 \epsilon+0.781 \epsilon^{2}+6.610 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& y^{*}=+0.211 \epsilon+0.508 \epsilon^{2}+3.322 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

Let us be a little bit more quantitative and ask the questions:

- For what values of the Veneziano parameter do we actually have a fixed point?
- What can cause a fixed point to disappear?

The values of the Veneziano parameter for which the fixed point exist is called

CONFORMAL WINDOW

Vacuum Stability

The conformal window can "close" because of vacuum stability.

Vacuum Stability at the Fixed Point

At the fixed point, the potential is given by:

$$
V^{*}(H)=u^{*} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}+v^{*}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

Vacuum Stability at the Fixed Point

$$
u^{*}=+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

At the fixed point, the potential is given by:

$$
v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
$$

$$
V^{*}(H)=u^{*} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}+v^{*}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
u^{*} & =+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
v^{*} & =-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
V^{*}(H)=u^{*} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}+v^{*}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

It was shown that the vacuum stability is obtained provided

$$
\left\{\begin{array} { l }
{ u ^ { * } > 0 } \\
{ u ^ { * } + v ^ { * } \geq 0 }
\end{array} \quad \text { OR } \quad \left\{\begin{array}{l}
u^{*}<0 \\
u^{*}+v^{*} / N_{F} \geq 0
\end{array}\right.\right.
$$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
u^{*} & =+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
v^{*} & =-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
V^{*}(H)=u^{*} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}+v^{*}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

It was shown that the vacuum stability is obtained provided

$$
\left\{\begin{array} { l }
{ u ^ { * } > 0 } \\
{ u ^ { * } + v ^ { * } \geq 0 }
\end{array} \quad \text { OR } \quad \left\{\begin{array}{l}
u^{*}<0 \\
u^{*}+v^{*} / N_{F} \geq 0
\end{array}\right.\right.
$$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

2-1-1 $\quad u^{*}+v^{*}=0.063 \epsilon \geq 0$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
& v^{*}=-0.137 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
\text { 2-1-1 } \quad u^{*}+v^{*}=0.063 \epsilon \geq 0
$$

$$
\epsilon \geq 0
$$

Vacuum Stability at the Fixed Point

$u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)$
$v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)$
2-1-1 $u^{*}+v^{*}=0.063 \epsilon \geq 0 \quad \epsilon \geq 0$
$3-2-2 \quad u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2} \geq 0$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

$$
\text { 2-1-1 } u^{*}+v^{*}=0.063 \epsilon \geq 0 \quad \epsilon \geq 0
$$

$$
3-2-2 \quad u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2} \geq 0
$$

$$
\epsilon \leq 0.328
$$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

2-1-1 $u^{*}+v^{*}=0.063 \epsilon \geq 0 \quad \epsilon \geq 0$

3-2-2 $u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2} \geq 0 \quad \epsilon \leq 0.328$

4-3-3 $\quad u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2}-1.62 \epsilon^{3} \geq 0$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

2-1-1 $u^{*}+v^{*}=0.063 \epsilon \geq 0 \quad \epsilon \geq 0$

3-2-2 $u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2} \geq 0 \quad \epsilon \leq 0.328$

4-3-3 $\quad u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2}-1.62 \epsilon^{3} \geq 0 \quad \epsilon \leq 0.147$

Vacuum Stability at the Fixed Point

$$
\begin{aligned}
& u^{*}=+0.200 \epsilon+0.440 \epsilon^{2}+2.693 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right) \\
& v^{*}=-0.137 \epsilon-0.632 \epsilon^{2}-4.313 \epsilon^{3}+\mathcal{O}\left(\epsilon^{4}\right)
\end{aligned}
$$

2-1-1 $u^{*}+v^{*}=0.063 \epsilon \geq 0 \quad \epsilon \geq 0$

3-2-2 $u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2} \geq 0 \quad \epsilon \leq 0.328$

4-3-3 $\quad u^{*}+v^{*}=0.063 \epsilon-0.192 \epsilon^{2}-1.62 \epsilon^{3} \geq 0 \quad \epsilon \leq 0.147$
Using Padè resummation this number is tighten further more to be $\quad \epsilon \leq 0.087$

Fixed Point Merger

Running of Coupling Constants

Quantities in quantum field theory can be computed in perturbation theory, with the role of small parameter

LOOP
 EXPANSION

 being played by the Planck constantAlso Beta functions can be computed in a loop expansion

$$
\begin{gathered}
\beta(g) \equiv \frac{d g}{d \log \mu}=A g^{2}+B g^{3}+C g^{4}+D g^{5}+\ldots \\
\begin{array}{c}
\text { 1-loop } \\
\text { coefficient }
\end{array} \quad \begin{array}{c}
\text { 2-loop } \\
\text { coefficient }
\end{array} \underset{\text { 3-loop }}{\text { coefficient }} \quad \begin{array}{c}
\text { 4-loop } \\
\text { coefficient }
\end{array}
\end{gathered}
$$

Fixed Point Merger

$$
\begin{gathered}
\beta(g) \equiv \frac{d g}{d \log \mu}=g^{2}\left(A+B g+C g^{2}+D g^{\check{ }}+\ldots\right)=0 \\
C=1
\end{gathered}
$$

Fixed Point Merger

$$
A+B g+g^{2}=0
$$

Fixed Point Merger

$$
A+B g+g^{2}=0 \quad g_{ \pm}^{*}=\frac{-B \pm \sqrt{B^{2}-4 A}}{2}
$$

- If the expression inside the squared root is negative, we have a pair of complex conjugate poles.
- On the other hand, if the expression inside squared root is positive, we have two real solutions, with a split given by the squared root term.

Fixed Point Merger

$$
A+B g+g^{2}=0 \quad g_{ \pm}^{*}=\frac{-B \pm \sqrt{B^{2}-4 A}}{2}
$$

- If the expression inside the squared root is negative, we have a pair of complex conjugate poles.
- On the other hand, if the expression inside squared root is positive, we have two real solutions, with a split given by the squared root term.

Fixed Point Merger

$$
A+B g+g^{2}=0 \quad g_{ \pm}^{*}=\frac{-B \pm \sqrt{B^{2}-4 A}}{2}
$$

- If the expression inside the squared root is negative, we have a pair of complex conjugate poles.
- On the other hand, if the expression inside squared root is positive, we have two real solutions, with a split given by the squared root term.

For small values of the Veneziano parameter the FPs are real

Fixed Point Merger

$$
A+B g+g^{2}=0 \quad g_{ \pm}^{*}=\frac{-B \pm \sqrt{B^{2}-4 A}}{2}
$$

- If the expression inside the squared root is negative, we have a pair of complex conjugate poles.
- On the other hand, if the expression inside squared root is positive, we have two real solutions, with a split given by the squared root term.

For small values of the Veneziano parameter the FPs are real

At a certain value, the solutions become complex and the FPs disappear

Conformal Window

Is the conformal window closing because of Vacuum Stability or a Fixed Point merger?

Plot kindly shared by Nahzaan Riyaz.

Beyond marginal operators

$v\left(\operatorname{Tr} H^{\dagger} H\right)^{2}$
$u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}$
$y \operatorname{Tr}(\bar{Q} H Q)$

Beyond marginal operators

$$
\sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

$u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}$
$y \operatorname{Tr}(\bar{Q} H Q)$

Beyond marginal operators

$$
v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \longrightarrow \sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

$u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}$

$$
\sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}
$$

$$
y \operatorname{Tr}(\bar{Q} H Q)
$$

Beyond marginal operators

$$
v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \longrightarrow \sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}
$$

$u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}$

$$
\sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}
$$

$$
y \operatorname{Tr}(\bar{Q} H Q) \longrightarrow \sum_{l} Y_{l}\left(\operatorname{Tr} H^{\dagger} H\right)^{l} \operatorname{Tr}(\bar{Q} H Q)
$$

Beyond marginal operators

$$
\left.\begin{array}{c}
v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \longrightarrow \sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \\
U\left(\operatorname{Tr} H^{\dagger} H\right)
\end{array}\right] \begin{aligned}
& u \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \longrightarrow \sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2}
\end{aligned}
$$

$$
y \operatorname{Tr}(\bar{Q} H Q) \quad \sum_{l} Y_{l}\left(\operatorname{Tr} H^{\dagger} H\right)^{l} \operatorname{Tr}(\bar{Q} H Q)
$$

Beyond marginal operators

$$
\left.v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \longrightarrow \quad \sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2}\right] ~ U\left(\operatorname{Tr} H^{\dagger} H\right)
$$

$u \operatorname{Tr}\left(H^{\dagger} H\right)^{2}$

$$
\begin{gathered}
\sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \\
C\left(\operatorname{Tr} H^{\dagger} H\right)
\end{gathered}
$$

$$
y \operatorname{Tr}(\bar{Q} H Q)
$$

$$
-\quad \sum_{l} Y_{l}\left(\operatorname{Tr} H^{\dagger} H\right)^{l} \operatorname{Tr}(\bar{Q} H Q)
$$

Beyond marginal operators

$$
\left.\begin{array}{cl}
v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} & \longrightarrow \sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \\
U\left(\operatorname{Tr} H^{\dagger} H\right)
\end{array}\right] \begin{aligned}
& \sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \\
& C\left(\operatorname{Tr} H^{\dagger} H\right) \\
& u \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \longrightarrow \quad \sum_{l} Y_{l}\left(\operatorname{Tr} H^{\dagger} H\right)^{l} \operatorname{Tr}(\bar{Q} H Q) \\
& Y\left(\operatorname{Tr} H^{\dagger} H\right)
\end{aligned}
$$

Beyond marginal operators

$$
\begin{array}{lll}
v\left(\operatorname{Tr} H^{\dagger} H\right)^{2} & \partial_{t} U\left(\operatorname{Tr} H^{\dagger} H\right) & \begin{array}{c}
\sum_{n} \gamma_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2}\left(\operatorname{Tr} H^{\dagger} H\right)^{2} \\
U\left(\operatorname{Tr} H^{\dagger} H\right)
\end{array} \\
u \operatorname{Tr}\left(H^{\dagger} H\right)^{2} & \partial_{t} C\left(\operatorname{Tr} H^{\dagger} H\right) & \begin{array}{ll}
\sum_{m} \alpha_{m}\left(\operatorname{Tr} H^{\dagger} H\right)^{m-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \\
& C\left(\operatorname{Tr} H^{\dagger} H\right)
\end{array} \\
y \operatorname{Tr}(\bar{Q} H Q) & \stackrel{\partial_{t} Y\left(\operatorname{Tr} H^{\dagger} H\right)}{ } & \begin{array}{ll}
\sum_{l} Y_{l}\left(\operatorname{Tr} H^{\dagger} H\right)^{l} \operatorname{Tr}(\bar{Q} H Q) \\
Y\left(\operatorname{Tr} H^{\dagger} H\right)
\end{array}
\end{array}
$$

Beta Functions
 Beyond Marginal Operators

$$
\partial_{t} u=-4 u+\left(2+\eta_{H}\right) \rho u^{\prime}+\frac{1}{2}\left(\frac{1}{1+u^{\prime}+4 \rho c}+\frac{1}{1+u^{\prime}}\right)-\frac{2 N_{C}}{N_{F}} \frac{1}{1+\rho y^{2}}
$$

$$
\partial_{t} c=2 \eta_{H} c+\left(2+\eta_{H}\right) \rho c^{\prime}-\frac{2 N_{C}}{N_{F}} \frac{y^{4}}{\left(1+\rho y^{2}\right)^{3}}
$$

$$
\begin{array}{r}
+\frac{1}{2}\left(-\frac{128 \rho^{3} c^{5}}{\left(1+u^{\prime}\right)^{3}\left(1+4 \rho c+u^{\prime}\right)^{3}}+\frac{64 \rho^{2} c^{3}\left(c-\rho c^{\prime}\right)}{\left(1+u^{\prime}\right)^{2}\left(1+4 \rho c+u^{\prime}\right)^{3}}-\frac{8 \rho c c^{\prime}}{\left(1+4 \rho c+u^{\prime}\right)^{3}}\right. \\
\left.-\frac{48 \rho^{2} c^{2} c^{\prime}}{\left(1+u^{\prime}\right)\left(1+4 \rho c+u^{\prime}\right)^{3}}+\frac{16 c^{2}}{\left(1+4 \rho c+u^{\prime}\right)^{3}}-\frac{2 c^{\prime}}{\left(1+4 \rho c+u^{\prime}\right)^{2}}\right)
\end{array}
$$

$\partial_{t} y=-3 \alpha_{g} y(0)+\frac{1}{2}\left(2 \eta_{\psi}+\eta_{H}\right) y+\left(2+\eta_{\phi}\right) \rho y^{\prime}-\frac{1}{2}\left(\frac{y^{\prime}}{\left(1+4 \rho c+u^{\prime}\right)^{2}}+\frac{y^{\prime}}{\left(1+u^{\prime}\right)^{2}}\right)$
$+\frac{y^{3}}{2\left(1+\rho y^{2}\right)\left(1+4 \rho c+u^{\prime}\right)}\left(\frac{1}{1+4 \rho c+u^{\prime}}+\frac{1}{1+\rho y^{2}}\right)-\frac{y^{3}}{2\left(1+u^{\prime}\right)\left(1+\rho y^{2}\right)}\left(\frac{1}{1+\rho y^{2}}+\frac{1}{1+u^{\prime}}\right)$

Fixed Point

$$
\partial_{t} u=0
$$

$$
\partial_{t} c=0
$$

$$
\partial_{t} y=0
$$

Fixed Point

$$
\partial_{t} u=0
$$

$$
\partial_{t} c=0
$$

$$
\partial_{t} y=0
$$

$$
c(\rho)=\sum_{n=1}^{\infty} \gamma_{n} \rho^{n-1}
$$

$$
y(\rho)=\sum_{n=0}^{\infty} y_{n} \rho^{n}
$$

Fixed Point

$$
\partial_{t} u=0
$$

$$
\partial_{t} c=0
$$

$$
\partial_{t} y=0
$$

∇

$$
\partial_{t} \gamma_{n}=0
$$

$$
\partial_{t} y_{n}=0
$$

Fixed Point \& Power Counting in ε

Coupling	FP	Coupling	FP	Coupling	FP		
γ_{1}	$+0.199781 \epsilon$	α_{1}	$+0.0625304 \epsilon$	y_{0}	$+0.458831 \sqrt{\epsilon}$		
γ_{2}	$-0.404135 \epsilon^{3}$	α_{2}	$-0.0844283 \epsilon^{3}$	y_{1}	$+0.318417 \sqrt{\epsilon^{5}}$		
γ_{3}	$+0.558651 \epsilon^{4}$	α_{3}	$+0.0721923 \epsilon^{4}$	y_{2}	$-0.468528 \sqrt{\epsilon^{7}}$		
γ_{4}	$-0.812282 \epsilon^{5}$	α_{4}	$-0.0699564 \epsilon^{5}$	y_{3}	$+0.626392 \sqrt{\epsilon^{9}}$		
γ_{5}	$+1.16104 \epsilon^{6}$	α_{5}	$+0.0706016 \epsilon^{6}$	y_{4}	$-0.798058 \sqrt{\epsilon^{11}}$		
\vdots							\vdots

Fixed Point \& Power Counting in ε

$$
u^{*}(\rho)=\sum_{n=0}^{\infty} \alpha_{n}^{*} \rho^{n+1}
$$

Coupling	FP	Coupling	FP	Coupling	FP		
γ_{1}	$+0.199781 \epsilon$	α_{1}	$+0.0625304 \epsilon$	y_{0}	$+0.458831 \sqrt{\epsilon}$		
γ_{2}	$-0.404135 \epsilon^{3}$	α_{2}	$-0.0844283 \epsilon^{3}$	y_{1}	$+0.318417 \sqrt{\epsilon^{5}}$		
γ_{3}	$+0.558651 \epsilon^{4}$	α_{3}	$+0.0721923 \epsilon^{4}$	y_{2}	$-0.468528 \sqrt{\epsilon^{7}}$		
γ_{4}	$-0.812282 \epsilon^{5}$	α_{4}	$-0.0699564 \epsilon^{5}$	y_{3}	$+0.626392 \sqrt{\epsilon^{9}}$		
γ_{5}	$+1.16104 \epsilon^{6}$	α_{5}	$+0.0706016 \epsilon^{6}$	y_{4}	$-0.798058 \sqrt{\epsilon^{11}}$		
\vdots							\vdots

Vacuum stability at the fixed point

$$
u^{*}(\rho)=\sum_{n=0}^{\infty} \alpha_{n}^{*} \rho^{n+1}
$$

Vacuum stability at the fixed point

$$
u^{*}(\rho)=\sum_{n=0}^{\infty} \alpha_{n}^{*} \rho^{n+1}
$$

At leading order in ε a re-summation of the couplings can be performed:

$$
u^{*}(\rho)=\alpha_{1}^{*} \rho^{2}+\frac{A^{2} \rho^{2}}{4} \log (1+A \rho)+\frac{B^{2} \rho^{2}}{4} \log (1+B \rho)-\frac{N_{C}}{N_{F}} D^{2} \rho^{2} \log (1+D \rho)
$$

$$
A \equiv 2 \alpha_{1}^{*}
$$

$$
B \equiv 2 \alpha_{1}^{*}+4 \gamma_{1}^{*}
$$

$$
D \equiv \frac{N_{F}}{N_{C}} \alpha_{y}^{*}
$$

Vacuum stability at the fixed point

$$
u^{*}(\rho)=\sum_{n=0}^{\infty} \alpha_{n}^{*} \rho^{n+1}
$$

At leading order in ε a re-summation of the couplings can be performed:

$$
u^{*}(\rho)=\alpha_{1}^{*} \rho^{2}+\frac{A^{2} \rho^{2}}{4} \log (1+A \rho)+\frac{B^{2} \rho^{2}}{4} \log (1+B \rho)-\frac{N_{C}}{N_{F}} D^{2} \rho^{2} \log (1+D \rho)
$$

$$
\begin{array}{rl|l}
A & \equiv 2 \alpha_{1}^{*} & 0^{4} \\
B & \equiv 2 \alpha_{1}^{*}+4 \gamma_{1}^{*} & 1000 \\
D & \equiv \frac{N_{F}}{N_{C}} \alpha_{y}^{*} & 100 \\
\hline
\end{array}
$$

Conclusion

- When studying the asymptotic behaviour of the running of a coupling constant, the presence of a Fixed Point can preserve the theory from running into infinity.
- A toy model (LiSa) was presented in very details as an example of a theory where such interacting Fixed Point is controlled by a small parameter.
- A perturbative analysis of the Conformal Window of LiSa was described and the main result is that it is still not clear whether the lost of conformality is due to vacuum instability or a Fixed Point Merger.
- Within Functional Renormalization Group techniques, the running and the Fixed Point of Beyond Marginal Operators have been studied. The main result is that at the Fixed Point it is possible to perform a re-summation of a power series. In this way, the scalar potential at the Fixed Point can be studied for arbitrarily large values of the field. The potential remains stable!
- An immediate future directions is to integrate the flow numerically, within having to perform any power series, but this is still

Scalar potential close to the FP

Stability Matrix

$$
M_{k}^{i} \equiv\left[\frac{\partial \beta^{i}(g)}{\partial g^{k}}\right]_{g=g^{*}}
$$

Couplings

$$
\alpha_{n-1}\left(\operatorname{Tr} H^{\dagger} H\right)^{n} \quad \theta_{\alpha_{n-1}}=(2 n-4)+n \gamma_{M}
$$

$$
\gamma_{n-1}\left(\operatorname{Tr} H^{\dagger} H\right)^{n-2} \operatorname{Tr}\left(H^{\dagger} H\right)^{2} \longmapsto \theta_{\gamma_{n-1}}=(2 n-4)+(n-2) \gamma_{M}+\gamma_{m}
$$

$$
y_{n}\left(\operatorname{Tr} H^{\dagger} H\right)^{n} \operatorname{Tr}(\bar{Q} H Q)
$$

$$
\theta_{y_{n}}=2 n+n \gamma_{M}+\left(\frac{\eta_{H}}{2}+\eta_{Q}\right)
$$

Flow

We define dimension-less couplings:

$$
U=k^{4} u \quad \operatorname{Tr} H^{\dagger} H=\rho k^{2} \quad \operatorname{Tr}\left(H^{\dagger} H\right)^{2}=\tau k^{4}
$$

And compute the flow:
$\partial_{t} u=-4 u+\left(2+\eta_{H}\right) \rho u^{\prime}+\frac{1}{2}\left(\frac{1}{1+u^{\prime}+4 \rho c}+\frac{1}{1+u^{\prime}}\right)-\frac{2 N_{C}}{N_{F}} \frac{1}{1+\rho y^{2}}$

Canonical dimension

Anomalous dimension

Quantum corrections
from the scalar potential

Quantum corrections from the yukawa

Flow

$\partial_{t} U\left(\operatorname{Tr} H^{\dagger} H\right)$ $\partial_{t} C\left(\operatorname{Tr} H^{\dagger} H\right)$
$\partial_{t} Y\left(\operatorname{Tr} H^{\dagger} H\right)$

Wetterich equation

$$
\partial_{t} \Gamma_{k}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left[\partial_{t} R_{k} \cdot\left(\Gamma_{k}^{(2)}+R_{k}\right)^{-1}\right]
$$

Regulator

$$
R_{k}=Z_{k}\left(k^{2}-q^{2}\right) \Theta\left(k^{2}-q^{2}\right)
$$

