Shedding light onto the dark freeze-out with FIMPs

Supervisor: Andrzej Hryczuk

- Esau Cervantes Physics Graduate Seminar NCBJ, Warsaw Poland
 - 7th March 2024

Evidence for Dark Matter

Galaxy rotation curves

Credits: Wikipedia

Evidence for DM

Esau Cervantes

Bullet Cluster

Planck 1807.06209

Esau Cervantes

DM Models on the market

- It must satisfy the following criteria:
 - **O** No interactions with the electromagnetic field (or extremely weakly).
 - Couplings with quarks and leptons should be significantly suppressed as well.
 - **O** It must facilitate the formation of large structures.
 - **O** It must account for the observed quantity of DM ($\sim 80\%$ of the *total* matter).
 - **O** It must be stable.

Up until now, our understanding of DM is largely shaped by what it is *not*, rather than a clear grasp of what it truly is.

How does DM look like?

Standard freeze-out

Universe expands with rate: $H = \frac{\dot{a}(t)}{a(t)}$; a: how the size changes over time.

The early universe is dominated by radiatic

As time progresses, the universe expands, cools down and particles dilute:

$$\operatorname{Son} \implies a(t) \propto t^{1/2} \sim \frac{1}{T} \text{ and } H \simeq 1.66g_* \frac{T^2}{m_{Pl}}.$$

Time
$$t \sim \frac{1}{T^2}$$

Standard freeze-out

Particles find each other easily.No net change in the # of particles.

Esau Cervantes

The standard freeze-out story

What if DM interacts with Standard Model particles?

Particles diluted and unable to interact. Remains net amount of DM.

How much DM remains?

Key entity
$$f_{DM}(p,t) \rightarrow n_{DM}(t) = \frac{1}{(2\pi)^3} \int d^3p f_D$$

 $\frac{df}{dt} = \hat{C}[f] \xrightarrow{\text{FLRW}} \frac{\partial f}{\partial t} - Hp \frac{\partial f}{\partial p} = \hat{C}[f]/E,$
 $f_{DM}(E) = \frac{Y}{Y^{eq}} e^{-E/T_{DM}}$
 $Y := \frac{n_{DM}}{s}$
Entropy density: $s = \frac{2\pi^2}{45} g_* T^3$
Code to solve

Esau Cervantes

How much DM remains?

QFT reactions (model dependent) $p_M(p,t)$. $\hat{C}[f_{DM}] := \left[d\Pi_a d\Pi_b d\Pi_c | \mathscr{M}_{DM,a\leftrightarrow bc} |^2 (f_b f_c - f_{DM} f_a) \right]$ Information of $\Gamma_{interaction}$ $\rangle_2 - \frac{Y'}{Y} + \dots, \langle \hat{C} \rangle_2 = \frac{1}{3T_{DM}n_{DM}} \int \frac{d^3p}{(2\pi)^3 2E} \frac{p^2}{E} \hat{C}$

we the eqs. : Binder et.al 2103.01944

How much DM remains?

Esau Cervantes

 $\Omega_{DM}^{obs}h^2 = 0.12$ if $\sigma_{\phi\phi\to sm,sm}v \simeq 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1} \Longrightarrow$ electroweak cross section!

Weakly Interacting Massive Particles: DM candidates with couplings in the electroweak scale (~100 GeV \rightarrow LHC!).

 $\Omega_{DM}^{obs}h^2 = 0.12 \leftrightarrow DM$ is 80% of *total* matter

Are WIMPs just a fairy tale?

Shedding light onto the dark freeze-out

Are WIMPs just a fairy tale?

What alternatives do we have?

Self interacting DM

SELF-INTERACTING DARK MATTER

ERIC D. CARLSON

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138

MARIE E. MACHACEK

Department of Physics, Northeastern University, Boston, MA 02115

AND

LAWRENCE J. HALL

Department of Physics, University of California; and Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Received 1992 March 17; accepted 1992 April 20

changing reactions

WIMPs	SIDM
$\phi\phi \leftrightarrow \text{SM,SM}$	$\phi\phi\phi(\phi)\leftrightarrow\phi\phi$

Esau Cervantes

Ω_{DM}^{obs} solely through self number changing reactions

For a scalar field $\frac{g}{3!}\phi^3 + \frac{\lambda}{4!}\phi^4$ leads to self interactions, e.g. $3 \leftrightarrow 2$

No portals \implies challenging to falsify!

Collision operator:

$$\begin{split} C_{self} &= \int \left(-f_{\phi}(p) \left| \tilde{\mathcal{M}}_{\underline{\phi}^{2} \to 345} \right|^{2} f_{2} d\Pi_{2} \left(\frac{1}{3!} d\Pi_{3} d\Pi_{4} d\Pi_{5} (1+f_{3})(1+f_{4})(1+f_{5}) \right) \right) \\ &+ (1+f_{\phi}(p)) \left| \tilde{\mathcal{M}}_{12 \to \underline{\phi}45} \right|^{2} \left(\frac{1}{2!} d\Pi_{1} d\Pi_{2} f_{1} f_{2} \right) \left(\frac{1}{2!} d\Pi_{4} d\Pi_{5} (1+f_{4})($$

Esau Cervantes

Solving the cBE for $3 \leftrightarrow 2$ reactions

The system of cBE:

O When DM is relativistic $(T_{DM} \gg m_{DM}), \Gamma_{3\leftrightarrow 2} > H$ (chemical eq.); **O** During freeze-out the dark sector uses its rest mass as *fuel* to keep itself warm; $O \implies T_{\phi} \sim 1/\log a$ (conservation of dark entropy during freeze-out).

Dark freeze-out

Evolution for m = 100 MeV

Dark freeze-out

Dark entropy conservation leads to *faster moving* (hotter) DM states during freeze-out

Esau Cervantes

Dark freeze-out

Dark freeze-out

Parameter space within reach

- Preferably mass in the 100 MeV Ο range;
- **O** T_{ϕ} freeze-out temperature below T_{SM} ;

coupling in the range
$$10^{-4}$$
 –

 \mathbb{Z}_2 broken phase: $\langle \phi \rangle = \sqrt{\frac{3}{\lambda}} m_{\phi} \implies \frac{g}{3!} \phi^3 = \frac{\sqrt{3\lambda} m_{\phi}}{3!} \phi^3$

Ratio of temperatures (T_{ϕ}/T) at freeze-out $(\Gamma_{3\leftrightarrow 2} = H)$

SIDM and the SM

The SIMP Miracle Hochberg et.al 1402.5143

Yonit Hochberg^{1,2},* Eric Kuflik³,[†] Tomer Volansky³,[‡] and Jay G. Wacker⁴§ ¹Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA ²Department of Physics, University of California, Berkeley, CA 94720, USA ³Department of Physics, Tel Aviv University, Tel Aviv, Israel and ⁴SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout process is a number-changing $3 \rightarrow 2$ annihilation of strongly-interacting-massive-particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, $3 \rightarrow 2$ annihilations typically predict sizable $2 \rightarrow 2$ self-interactions which naturally address the 'core vs. cusp' and 'too-big-to-fail' small structure problems.

Follow up w. dark QCD: Hochberg et.al 1411.3727

SIDM and the SM

What about an *almost* secluded sector?

No a priori reason to set $\lambda_{h\phi} = 0$ FIMPs: <u>Feebly</u> Interacting Massive Particles

Freeze-in Assume $n_{DM}^{eq} \gg n_{DM}^{i}$ $\Gamma_{SM \to DM} \gg \Gamma_{DM \to SM}$ Produce DM out of the SM plasma!

 $\rightarrow \lambda_{h\phi}$ in HP

FIMPs and freeze-in

Early hot universe at $T\gtrsim v_{EW}=246~{\rm GeV}$

Esau Cervantes

FIMPs and freeze-in

Production via: $HH^{\dagger} \rightarrow \phi \phi$

Low dense dark sector

FIMPs and freeze-in

After electroweak phase transition $H^\dagger H \phi^2 \supset 2 v_{EW} h \phi^2$

Early hot universe at $T \lesssim v_{EW} = 246~{\rm GeV}$

Esau Cervantes

FIMPs and freeze-in

Production via: $h \rightarrow \phi \phi$

Low dense dark sector

FIMPs and freeze-in

Lebedev et.al 1908.05491

Esau Cervantes

FIMPs and freeze-in

Punchline: Portal coupling ~ 10^{-11}

T = 150 GeV (EW phase transition)

Consolidating both ideas

FIMPs and SIDM

No experimental signatures of standard WIMPs FO

FIMPs and freeze-in

Esau Cervantes

Detecting FIMPs via Higgs Portals

Detecting FIMPs via Higgs Portals

If unstable Lifetime $\tau_{\phi \to SM,SM} = 1/\Gamma_{\phi \to SM,SM} = \frac{1}{\theta^2 \Gamma_{h \to SM,SM}}$ $\theta := \frac{v_{EW}v_{\phi}}{m_h^2 - m_{\phi}^2} \lambda_{h\phi}$ $\tau_{\phi} \propto 1/\lambda_{h\phi}^2$

 $\tau_\phi > age~of~universe$ naturally for freeze-in $\lambda_{h\phi} \ll 1$

Esau Cervantes

Detecting SIDM via Higgs Portals

SIDM produced via freeze-in

During dark freeze-out DM transforms # of particles into k. energy.

Where do we get the energy from?

Short answer: the Higgs

H

Esau Cervantes

SIDM produced via freeze-in

Can the reverse happen? In principle, *why not*?

Dynamics

Esau Cervantes

Phenomenology

Any (interesting) phenomenology?

- For *unstable* self interacting DM:
 - **O** considerably constrained by telescopes data: $\tau_{DM \to \gamma\gamma} \gtrsim 10^{28} \text{ s};$
 - $\mathbf{O} \Longrightarrow$ freeze-in subdominant.
- For *stable* self interacting DM:
 - **O** No bounds from telescopes;

 - **O** No falsification possible with current technology.

O Annihilation cross section suppressed due to Higgs mass (hint: light mediator);

Conclusions

Thank you very much for your attention!