The evolutionary pathways of dust and cold gas in quiescent galaxies

Giuliano Lorenzon

PhD supervisor: Darko Donevski

Collaborators: K. Lisiecki, M. Romano, C. Lovell, D. Narayanan, R. Dave'

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk NCN founded project "Dusty giants"

The (non?)disappearance of dust

in quiescent galaxies

Are feedbacks efficient in removing dust?

Layout of the talk

Different phases, different tracers

Molecular gas: the fuel of star formation

- Distributed in clouds in the galaxy
- H_2 clouds are cold (**T~10 K**) and dense (**T~10⁴ cm⁻³**)
- Collapse by self-gravity to form stars
- Associated with star formation (SF) regions
- $H_2 \rightarrow HII$ in photoionized region around young stars

Dust grains: catalysts of star formation

Where is the dust?

Galliano+17

A case of galaxy quenching

What is quenching and how it affects ISM

Quenching is the cessation of star formation

A backstory of dust

Dust formation and destruction channels

Channels of dust production

- Grains form in the outer envelope of (super)giant stars (M< 8 M_{sun}) Timescales ~ 10⁸ - 10⁹ yr
- Composition depends on
- C / O > 1 \rightarrow Carbon grains
 - \circ C / O < 1 \rightarrow Silicate grains
- Massive stars go supernova
- Dust forms in the expanding electa
- Yields depend on the mixing coefficient and physical conditions of the ejecta
 Timescale t<10⁷ yr

Yields are tabulated and based on observations

Mechanisms of dust destruction

Different evolutionary scenarios: is dust destroyed or not?

Big scatter in the dust fraction: are feedbacks efficient or not?

The investigation tools

Limitations of ISM observations in QGs and the help of simulations

Observations are hard

We need to balance resolution, sensitivity and coverage for large statisitcs

Simulations mean more statistics and a way to guide observation towards interesting targets

Mimicking feedbacks: the SIMBA simulation

cosmological galaxy formation simulation with meshless finite mass hydrodynamics Self consistent evolution of baryonic together with dark

matter

- Dust destroyed / created / growth on-the-fly
- Black hole hot gas Bondi accretion, cold gas torque-limited accretion
- Well reproduces dust mass function and CGM properties
 - Non-constant dust-to-metal ratio
- Number counts of sub-mm sources is consistent with observations thanks to high SFR and dust masses

Linking ISM and stars

$_{\text{DOR}} = M_{\text{dust}} / M_{\text{H2}}$

- Allows to directly compare the 2 main components of the ISM
- Constant if the dust follows the H₂ gas
- Gas phase metallicity serves as proxy for the galaxy mass / age

Scatter in dust fraction due to QGs with anomalous properties (high dust or high H_2)

Photometric selection of QGs depends on dust content!

The data sample

• 0 < z < 8

- ~ 2400 QGs in clusters ($M_{halo} > 10^{14} M_{sun}$)
- ~ 7500 QGs in field
- $10^9 < M_{star} < 10^{12} M_{sun}$

Selecting the QGs in SIMBA Quenching Redshift Quenching based on 2 6 10^{-8} -Star formation: sSFR > 1/T(z) **Dry phase** Quenching: $sSFR < 0.2/\tau(z)$ -10^{-10} Follows the z-evolution of y_{T} SF phase $\frac{1}{2}$ $\frac{10^{-12}}{10^{-12}}$ the main sequence scatter $1/\tau(z_a)$ **QG** phase $0.2/\tau(z_q)$ depending on sSFR and f_{μ_2} : $t_{mquench}$ SF peak 10^{-14} 0.251.00 1.250.000.500.75Start / end quenching $\times 10^{10}$ Lookback time [yr] $f_{\mu_2} < 1\%$ (gas fraction) Big bang

Effect of the environment on quenching?

Lorenzon et al. in prep

- Fraction of dusty QGs with redshift and environment
- Different definitions of "dusty" using f_{dust} = M_{dust}/M_{H2} thresholds
- Dusty QGs are abundant at higher redshift!

Investigating the usual suspects

Exploration of the different mechanisms of dust sputtering in SIMBA

Side note: SNe inject dust with the ejecta, but the shock destroys the dust in the surrounding ISM

- Short timescales (t<10⁸ yr)
- Efficient sputtering by H₂
- gas
 High density in SNe shocks
- UV from young stars heat dust and
- Winds remove dust

Stellar activity

Hot halos

galaxies

X-ray

The effect is a decrease of the fraction of dusty QGs in cluster with respect to the field (as observed)

Gas temperature T~10⁷ K

Density ρ∼10^{−4} cm^{−3}

Galaxy mergers

- Dust-poor (dry) mergers cause
- Dust survive in dust-rich (wet) merger
- Gravitational instability → cool flows
- Possible AGN activation

Major Mergers

AGN activity

X-ray radiation from accretion

disk

- Accretion causes powerful winde
- Collimated jets can expel ISM far from the galactic plane

AGN jet-mode as cause for the scatter

Back on the crime scene

A comparison of SIMBA predictions and current observations

ISM evolution in observations: long timescales?

- 1. Large scatter of f_{dust} for ~QGS
- 2. Very different timescales for dust destruction observed
- 3. Is destruction inefficient or is there something else?
- 4. Is dust following stellar evolution (and thus the gas component)?

Lee+23

Exploring the dust-age plane

Lorenzon et al. in prep

- f_{dust} does not evolve before quenching
- The scatter happens during the quenching phase.
- A group of old galaxies shows large f_{dust} long after the quenching
 - Gas removal timescale not directly related to f_{dust}

The culprit

Dust growth in SIMBA and its effect on future observations

Dust re-growth in the ISM

- Dust growth by condensation of metals
- Short typical dust formation timescale
- Depends on T and density of the hot gas
- Most efficient for super-solar metallicity
- Efficient grain growth allows dust grains to withstand sputtering

Both simulation and observations point to the same scenario:

The complexity of the problem must increase, with the inclusion of prolonged dust growth in ISM

But probably dust is just very resilient

The (non?)disappearance of

in quiescent galaxies

Are feedbacks efficient in removing dust?

Summary

- SIMBA predicts high fractions (>60%) of dusty QGs around z~2 in both cluster and field
- t_{cuench} bimodelity independently of the environment
- δ_{nup} reaches similar values to MS galaxies
- In cluster environment the fraction of dusty QGs is smaller
- The large scatter in f_{dust} is due to allow QCs having both a jet and radiative mode AGN
- Dust-removal and H_g-removal timescales can be significantly different, providing clue for dust re-growth

There is a lot more coming in

- New SIMBA-C will include a new chemical enrichment model with additional grain-size distribution —> lots of new physics to explore!
- Zoom in simulations can help resolving what happens around the dry-phase —> detailed analysis of specific targets!
- We are waiting for JWST observational time! (hopefully) -> confirmation of SIMBA results?
- We have Continit observations coming up —> protocluster candidate to better test the environment
- Dust is hiding insight ALMA archives —> time to scavenge