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The (non?)disappéarance of
dust
in quiescent galaxies

Are feedbacks efficient in removing dust?
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Different phases, diff_erent tracers
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Molecular gas: the fuel of star formation

Distributed in clouds in the galaxy
H, clouds are cold ( ) and dense (

by self-gravity to form stars
Associated with regions

H, — HIll in photoionized region




Dust grains: catalysts of star formation
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A case of galaxy
quenching

What is quenching and how it affects ISM



Star-forming
galaxies

Young,
ISM-rich
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galaxies
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processed
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A backstory of dust

Dust formation and destruction channels



Channels of' dust production

IMF
Galaxy age
Grains form in the
of (super)giant stars
(M<8M_ ) m,
un .
~ 108 = 109 yr Pdust, AGB = mqd m (D m P (tu Tn ) dm,

depends on
o C€/0>1— Carbon grains

o C€/0<1— Silicate grains

Produced Stellar
dust mass densn‘y lifetime
go supernova

Dust forms in the

Yields depend on the
and
of the ejecta

t<10” yr Yields are tabulated and
based on observations
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Mechanisms of dust destruction

Different mechanisms
affect dust dependin

on environmentq|

conditions
Hot Sputtering * st "V @
~ fequires high .
D temperature ang it
density of lonized gas
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Limit for
individual
detection

Big scatter in the
dust fraction: are
feedbacks
efficient or not?




The investigation tools

Limitations of ISM observations in QGs and the help
of simulations

15



Spectrum
shift with
redshift
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Simulations mean more
statistics and a way to
guide observation towards
interesting targets



imicking feedbacks: the SIMBA simulation
of baryonic together with dark

matter

e Dust destroyed / created | growth

gas

Black hole hot gas Bondi accretion, cold

and CGM properties

cosmological galax is consistent with

formation simulation
with meshless finite | observations thanks t

mass hydrodynamics

o high SFR and dust masses
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Allows to directly the
2 main components of the ISM
Constant if the dust follows the
H, gas

Gas phase metallicity serves
as proxy for the galaxy mass /
age
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Photometric selection of QGs depends on dust
content!
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The data sample

o ~2400QGein

e ~7500QGsin

100 cMpe?® (3x1024° particles)

(> 104 M,

o 10°<M_  <10®M_,
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~ Selecting the QGs in SIMBA

Quenching based on

Redshift
4
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Effectofthe environment on quenching?

Quenching time (t quench) normalized

by the cosmic time 1(2)

in SIMBA
with

Striking

the environment
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Investigating the usual
suspects

Exploration of the different mechanisms of dust
sputtering in SIMBA



Stellar activity

remove dust
from heat dust and

gas
in SNe shocks

Efficient

~ Side note: SNe inject

~ dust with the ejecta, but

~— the shock destroys the
~ dust in the surrounding
OV~ —

N

o SN Shock in X-ray
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Hot halos

Black Hole Sl
Black Hole Host Galaxy |~ .°

around massive

®

Chandra

galaxies

Intra-Cluster Medium ( ) emits in
X-ray

Gas temperature T~107 K

Density p~10~*cm

~ The effect is a decrease L
— of the fraction of dusty [ — —
= @GS SR . —
— respeCt toihe field (asm
ﬂabservedf T
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Galaxy mergers

Dust-poor (dry) mergers cause

Dust survive in dust-rich (wet)

merger

Gravitational instability — cool flows

—

Possible

—_— ISM in merging .
— galaxies —
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AGN activity

radiation from

e Accretion causes powerful

e Collimated can expel ISM far

from the galactic plane
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Fast QGs




Back on the crime scene

A comparison of SIMBA predictions and current
- observations
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~ ISM evolution in observations: long timescales?

Michafowski+19,
+ T=2.5Gyr
local ETG with dust
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The culprit

Dust growth in SIMBA and its effect on future
- observations
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But probabl
dust 1s just ve
resilient

Both simulation and
observations point to
the same scenario:

The complexity of
the problem must
increase, with the
inclusion of
prolonged dust
growth in ISM
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- Summary

SIMBA predicts around z~2 in both
cluster and field

independently of the environment
reaches values to
In environment the of dusty QGs is

The large scatter in f, _ is due to having
mode

and timescales can be significantly
, providing clue for




There is a 1ot more coming in

New will include a new chemical enrichment model with
additional —> |ots of new physics to explore!

can help resolving what happens around the
dry-phase —> detailed analysis of specific targets!

We are waiting for ! (hopefully) —>
confirmation of SIMBA results?

We have observations coming up —> protocluster candidate to
better test the environment

Dust is hiding insight —> time to scavenge




