Galactic foreground bias in CMB lensing reconstruction

Kishan Deka

Astrophysics Division (BP4) NCBJ, Warsaw

Cosmic Microwave Background (CMB)

Penzias and Wilson first measured the CMB in 1964.

Penzias & Wilson

Mollweide projection

Big Bang model

Planck team(ESA)

Planck full-sky survey

CMB is weakly lensed

• CMB photons experience lensing by the intervening matter distribution.

Planck (EAS)

Motivation

To probe primordial anisotropies :

- 1. Retrace the lensing
 - \implies reconstruct the lensing field.
- 2. De-lense the observed CMB maps

CMB anisotropies

Planck (2018)

Statistics of the anisotropies

- Anisotropies as a function of angular size
- Multipole moment, $l \sim \pi/\theta$

Spherical harmonics

Temperature fluctuations are decomposed in spherical harmonic basis :

Angular power spectra

Power spectra : Fluctuations as a function of angular size.

Polarisation in CMB

Measuring polarisation

Stokes parameters are measured as,

$$Q \propto E_x^2 - E_y^2
onumber \ U \propto E_{45^\circ}^2 - E_{-45^\circ}^2$$

Q and *U* are rotationally **not** invariant.

Q and U maps

Planck (2015)

E and B modes

parity odd.

Density perturbations (scalar) generate only *E* modes. Gravity waves (tensor) generate both *E* and *B* modes.

E > 0

Evidence of inflation

 Primordial gravity waves (tensor modes) creates B modes => C_l^{BB} is non-zero Smoking gun evidence for inflation.

Measuring E and B modes

Recent and future experiments targets detection of primordial B modes.

UWAGA!!!

There is a catch...actually two.

- 1. CMB lensing
- 2. Foregrounds

<□ > < □ > < □ > < Ξ > < Ξ > Ξ = の Q ○ 16/45

CMB Lensing

Lensing potential

- Lensing field is characterised by lensing power spectra.
- Lensing amplitude is maximum at degree scale.

Unlensed T map

Lensed T map

Difference map

difference

gradient of ϕ

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lensing B modes

Lensing twists primordial E modes
 ⇒ generates lensing B modes

APS / Alan Stonebrake

An illustrative example

Here is an exaggerated example of lensing by a Gaussian deflection field.

Unlensed B map

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lensed B map

Observational evidence

E modes and lensing B modes have been detected by different observations.

CMB-S4 Science Book

Primordial B modes

- Lensing B modes dominates primordial B modes.
- Tensor-to-scalar ratio (r) : amplitude of tensor perturbation to amplitude of scalar perturbation.

Why lensing reconstruction?

Lensing reconstruction of the deflection field is important :

- Subtract lensed B modes to probe primordial B modes.
- Improved constrains on cosmological parameters.
- Probe matter distribution of the universe.

Why lensing reconstruction?

Lensing reconstruction of the deflection field is important :

- Subtract lensed B modes to probe primordial B modes.
- Improved constrains on cosmological parameters.
- Probe matter distribution of the universe.

Why lensing reconstruction?

Lensing reconstruction of the deflection field is important :

- Subtract lensed B modes to probe primordial B modes.
- Improved constrains on cosmological parameters.
- Probe matter distribution of the universe.

CMB-S4 survey

• Next generation ground-based CMB survey.

South-Pole

Chile

Targets galactic polar regions ⇒ both small and large scales.

CMB-S4 specifications

► For large aperature telescopes :

- Angular resolution (*FWHM*) = 1.5 arcminute
- Noise level in T (σ_T) = 2 μ *K*-arcminute
- For comparison, Planck satellite had :
 - Angular resolution (*FWHM*) = 5 arcminute (temperature)
 - Angular resolution (*FWHM*) = 10 arcminute (polarisation)
 - Noise level in T (σ_T) = 35 μ *K*-arcminute

Lensing reconstruction

- Lensing generates correlated statistical anisotropies.
- Quadratic combination of two CMB observations provides a noisy lensing estimate.

Quadratic Estimator

• The lensing power spectra is reconstructed,

$$\langle \phi_{LM}^* \phi_{L'M'} \rangle = (2\pi)^2 \delta(L - L') \left[C_L^{\phi\phi} + N_L^{\phi\phi} \right]$$

accompanied by a noise covarince $N_L^{\phi\phi}$.

- Quadratic estimation (QE) \implies determine 4-point correlation function.
- The noise $(N_L^{\phi\phi})$ is dominated by $N_L^{(0)}$ bias from disconnected part of QE.

Reconstruction noise

- For CMB-S4 survey, the EB estimator has the lowest reconstruction bias.
- Minimum Variance (MV) combination of all estimators has the least bias by construction.

Lensing reconstruction

- Noise dominates at high multipoles.
- $N_L^{(1)}$ bias is very small and higher order $N_L^{(p)}$ biases are smaller.

Full-sky reconstruction

CMB Foregrounds

30-353 GHz: δT [μK_{onb}]; 545 and 857 GHz: surface brightness [kJy/sr]

Planck (2015)

Foreground contributions

Planck (2018)

Contamination in polarisation

Planck (2018)

Foregrounds at 145GHz

Galactic plane is masked (80% of the sky).

Foreground bias

Reconstruction noise increases in presence of foreground. We use 80% of the sky for lensing reconstruction.

Lensing reconstruction

Lensing reconstruction on 80% of sky with foregrounds.

- EB estimator result has an extra bias.
- Higher order $N_L^{(p)}$ bias are too small to add significant deviation.

• Lensing power spectra estimator includes foreground power.

$$\frac{1}{2L+1}\sum_{M}\langle\phi_{LM}^{*}\phi_{LM}\rangle = C_{L}^{\phi\phi} + N_{L}^{\phi\phi} + F_{L}^{syst.}$$
(1)

• The $F_L^{syst.}$ term is computed using lensing reconstruction algorithm on foreground only maps.

The biases adds up

• $F_L^{syst.}$ term corrects the bias in low multipole.

Summary

- Lensing reconstruction is crucial to remove lensing B modes.
- Polarisation field estimators performs well for CMB-S4 experiment.
- Foreground contamination have huge impact on EB estimator (the best one).
- Foreground removal is necessary to reduce $F_L^{syst.}$ bias.
- I will study foreground residue bias on foreground removed CMB maps.

Thank You.

Backup slides ...

Minimum variance combination

• A generalised inverse variance weighting yields,

$$d_L^{mv} = \sum_{\alpha} w_L^{\alpha} d_L^{\alpha}$$
 (2)

where,

$$w_{lpha} = rac{\sum_{eta} (\mathbf{N}^{-1})_{lpha} eta}{\sum_{eta_{\gamma}} (\mathbf{N}^{-1})_{eta} \gamma} \ , \ N_{m
u} = rac{1}{(\sum_{eta_{\gamma}} \mathbf{N}^{-1})_{eta} \gamma}$$

- Minimum variance estimator reduce reconstruction noise.
- BB estimator is neglected.

Reconstructed lensing field

Reconstruction

recon. map (1.5' res.)

・ロト ・ 日 ・ ・ 王 ・ 王 = の へ · 3/14

Lensing example

Hu & Okamoto (2002)

Lensing effects

- Lensing smooths out the angular power spectra.
- **Interesting** : Lensing mixes the power between large scales and small scales.
- **Important** : It generates lensing B-modes from primordial E-modes.

・ ・ 「日 ・ ・ 王 ・ 王 = うへで 6/14

Lensing potential reconstruction

recon. map (1.5' res.)

difference

Foreground polarization (Planck 2015 resu

Masking

Masking larger part of galactic plane reduces bias.

solid : 50% sky, dashed : 80% sky.

top: 80% sky, bottom: 50% sky.

Galactic Foregrounds

Different emissions dominates at different frequencies -

• Thermal dust emission: dust + galactic magnetic field (GMF)

- Synchrotron emission : relativistic electron accelerated by GMF
- Free-Free emission : Warm Ionized Medium
- Spinning dust : Rotating dipole radiation

Lensed power spectra

Lensing smooths out the angular power spectra.

・ロ ・ ・ @ ・ ・ ヨ ・ ミ = ・ ミ = ・ の へ · 11/14

Lensing reconstruction

Mode-coupling between multipoles in fourier space.

$$\delta T(\mathbf{l}) = \int \frac{d^2 \mathbf{l}_1}{2\pi} (\mathbf{l}_1 - \mathbf{l}) \cdot \mathbf{l}_1 \tilde{T}(\mathbf{l}_1) \phi(\mathbf{l} - \mathbf{l}_1)$$
(3)

Ensemble average of random Gaussian CMB realisations for a fixed lensing field ⇒

$$\langle T(\mathbf{l})T(\mathbf{l}')\rangle_{CMB} = f_{\alpha}^{TT}(\mathbf{l},\mathbf{l}')\phi(L)$$
 (4)

where, L = l + l', assuming $l \neq -l'$

• The factor f_{α}^{TT} is fixed combination of unlensed power spectra.

Quadratic Estimators

• Generalised estimate of ϕ :

$$\langle \mathbf{x}(\mathbf{l})\mathbf{x}(\mathbf{l}')\rangle_{CMB} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(L)$$
 (5)

where, x, x' = T, E, B.

- ϕ is statistically isotropic $\implies \langle \phi(L) \rangle = 0$.
- Okamoto & Hu estimator :

$$d_{\alpha}(L) = \frac{A_{\alpha}(L)}{L} \int \frac{d^2 \mathbf{l}_1}{(2\pi)^2} x(\mathbf{l}_1) x'(\mathbf{l}_2) g_{\alpha}(\mathbf{l}_1, \mathbf{l}_2)$$
(6)

where, $\mathbf{l}_2=L-\mathbf{l}_1$ and the normalization satisfies, $\langle d_{lpha}(L)
angle_{CMB}=L\phi(L)$

E and B modes

$$\tilde{Q}+i\tilde{U}=e^{-2i\psi}(Q+iU)$$

▶ Q and U are spin-2 fields.

$$(Q \pm iU)(\hat{n}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm}^{\pm 2} Y_{l}^{m} = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (a_{lm}^{E} \pm a_{lm}^{B})_{\pm 2} Y_{l}^{m}$$

$$a_{lm}^{E} = rac{1}{2}(a_{lm}^{+2} + a_{lm}^{-2})$$

$$a^{B}_{lm} = \frac{-i}{2}(a^{+2}_{lm} - a^{-2}_{lm})$$