Deeply virtual scattering in QCD

Víctor Martínez-Fernández

PhD student at the National Centre for Nuclear Research
(NCBJ, Warsaw, Poland)

Outline

- Standard model: EW + QCD
- QCD \rightarrow deep inelastic scattering (DIS)
- Deeply virtual Compton scattering (DVCS) and collinear factorization:
- The $x=\xi$ restriction
- Timelike Compton scattering (TCS)
- Double deeply virtual Compton scattering (DDVCS):
- $x \neq \xi$ solution
- Kleiss \& Stirling (KS) techniques
- Latest results on theory and phenomenology
- Experiments around the globe
- Summary

Standard model

Modern particle physics = Standard model:

$$
\underbrace{S U(3)_{C}}_{\substack{\text { QCD } \\
\text { sector }}} \otimes \underbrace{S U(2)_{L} \otimes U(1)_{Y}}_{\begin{array}{c}
\text { Electroweak } \\
\text { sector }
\end{array}}
$$

- $S U(3)_{c}$: strong interactions $=$ quarks and gluons (partons) coupled to form hadrons
- Quarks and gluons: elementary, free asymptotically only
- Hadrons: composite objects, the states you find in nature

How to access partons?

- "Hitting" hadrons with high-energy particles: (virtual) photon
- Mid 1950s: SLAC proves the proton to be an extended object (elastic scattering)
- Late 1960s: SLAC \& MIT prove the composite nature of the proton via inelastic scattering:
(1) Inclusive: no control over all final state particles
(2) Exclusive: full control over all final state particles

Elastic scattering of electron and proton at SLAC

Plot from: R. Hofstader \& R. W. McAllister, Phys. Rev. 98, 217 (1955)

- Mott xsec: spinless and pointlike target

$$
\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }}=\underbrace{\frac{Z^{2} \alpha_{\mathrm{em}}^{2}}{4 E^{2} \sin ^{2}(\theta / 2)}}_{\text {Rutherford }} \cos ^{2}(\theta / 2)
$$

- Rosenbluth xsec: spin- $1 / 2$ and pointlike target

$$
\begin{aligned}
&\left.\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right|_{\substack{\text { Rosint }}}=\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }}\left[1+2 \frac{Q^{2}}{4 M^{2}} \tan ^{2}(\theta / 2)\right] \\
& \times \delta\left(\frac{Q^{2}}{2 M}-\nu\right), \nu=E-E^{\prime}
\end{aligned}
$$

- Rosenbluth xsec: spin-1/2 and extended target

$$
\begin{aligned}
& \left.\quad \frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right|_{\substack{\text { Rostended }}}=\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }}\left[F_{E}^{2}\left(|\vec{q}|^{2}\right)\right. \\
& \left.+2 \frac{Q^{2}}{4 M^{2}} \tan ^{2}(\theta / 2) F_{M}^{2}\left(|\vec{q}|^{2}\right)\right] \delta\left(\frac{Q^{2}}{2 M}-\nu\right)
\end{aligned}
$$

Elastic scattering of electron and proton at SLAC

- Rosenbluth xsec: spin-1/2 and extended target

$$
\begin{gathered}
\left.\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right|_{\substack{\text { Ros, } \\
\text { extended }}}=\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }}\left[F_{E}^{2}\left(|\vec{q}|^{2}\right)\right. \\
\left.+2 \frac{Q^{2}}{4 M^{2}} \tan ^{2}(\theta / 2) F_{M}^{2}\left(|\vec{q}|^{2}\right)\right] \delta\left(\frac{Q^{2}}{2 M}-\nu\right)
\end{gathered}
$$

- Taking the proton to be an extended object of radius $\sim 10^{-13} \mathrm{~cm}$ with spin- $1 / 2$ fits the experimental data

Plot from: R. Hofstader \& R. W. McAllister,
Phys. Rev. 98, 217 (1955)

Deep ineslastic scattering (DIS)

Feynman graph for DIS

- DIS: inclusive experiment breaking the proton

$$
d \sigma_{\mathrm{DIS}} \sim L^{\mu \nu} W_{\mu \nu}
$$

- $L^{\mu \nu} \rightarrow$ pQED tensor, calculable
- $W_{\mu \nu} \rightarrow$ non-trivial QCD part: perturbative coefficient function convoluted with a non-perturbative term (PDF)

Deep ineslastic scattering (DIS)

- DIS: inclusive experiment breaking the proton

Feynman graph for DIS

$$
\sum_{X} \int_{X}|X\rangle\langle X|=1 \leftrightarrow \text { inclusiveness in practice }
$$

Form factors \& geometric shape

- DIS cross-section in terms of form factors $\left(F_{1}, F_{2}\right)$:

$$
\begin{gathered}
\left.\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\right|_{\text {DIS }}=\left.\frac{d \sigma}{d \Omega}\right|_{\text {Mott }} \cdot\left[\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} \tan ^{2}(\theta / 2) F_{1}\left(x, Q^{2}\right)\right] \\
x=\frac{Q^{2}}{2 p q} \underbrace{=}_{\begin{array}{c}
\text { proton } \\
\text { rest } \\
\text { frame }
\end{array}} \frac{Q^{2}}{2 M \nu} \leftrightarrow \text { Björken variable, } \\
\nu=E-E^{\prime}
\end{gathered}
$$

- If F_{1}, F_{2} are independent of Q^{2}, then DIS results on scattering on pointlike particles and the proton is not elementary:
spatial distribution: $\rho_{j}(\vec{r}) \sim \int d^{3} \vec{q} e^{i \vec{q} r} F_{j}\left(x,|\vec{q}|^{2}\right), \quad|\vec{q}|^{2}=Q^{2}$
- If $F_{j}\left(x,|\vec{q}|^{2}\right)=f_{j}(x)$, then $\rho_{j}(\vec{r}) \sim \delta(\vec{r}) f_{j}(x) \Rightarrow$ pointlike target

DIS at SLAC-MIT

- W is the invariant mass of the recoiling target system (X in the graph for DIS)
- $W=3$ and 3.5 GeV : the (almost) independence with q^{2} suggests scattering off elementary particles (pointlike or very small) particles

Plot from: M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

More from SLAC

Plot taken from Carolina Riedl's talk at the 61 Cracow summer school of theoretical physics: Electron-lon Collider physics (2021). F_{2}^{p} means F_{2} for the proton

- Almost independent of Q^{2} : very small particles inside the proton that are interacting with each other, i.e.,

$$
F_{2}\left(x, Q^{2}\right) \sim F_{2}(x)
$$

- Dependence on $Q^{2} \rightarrow$ DGLAP and gluons

Parton Distribution Function (PDF)

- DIS cross-section can be factorized via PDFs as

$$
\begin{gathered}
\sigma_{\gamma N \rightarrow x}=\sum_{f} \int_{0}^{1} d x \sigma_{\gamma \mathfrak{q}_{f} \rightarrow x}(x) \operatorname{PDF}_{f}(x), \quad f=\text { flavor }, \\
x=\text { longitudinal momentum fraction }
\end{gathered}
$$

in the Björken limit: $Q^{2} \rightarrow \infty, x$ fixed

- For PDFs, x coincides with the Björken variable: $x_{B}=\frac{Q^{2}}{2 p q}$
- PDF is a 1D distribution:

$$
\operatorname{PDF}_{f}(x)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{p}^{+} z^{-}}\langle N(p)| \bar{q}_{f}(-z / 2) \gamma^{+} \mathcal{W}[-z / 2, z / 2] \mathfrak{q}_{f}(z / 2)|N(p)\rangle\right|_{z_{\perp}=z^{+}=0}
$$

- z^{+}, z^{-}, z_{\perp} : light-cone coordinates
- \mathcal{W} : Wilson line

Light-cone dominance

- In PDF: $z^{2}=2 z^{+} z^{-}+z_{\perp}^{2} \xrightarrow{z^{+}=z_{\perp}=0} 0$, but why?
- PDF comes from $W_{\mu \nu}$:

$$
4 \pi W_{\mu \nu}=\int d^{4} z e^{i q z}\langle p| j_{\mu}(z) j_{\nu}(0)|p\rangle
$$

Light-cone dominance

$$
4 \pi W_{\mu \nu}=\int d^{4} z e^{i q z}\langle p| j_{\mu}(z) j_{\nu}(0)|p\rangle
$$

What's the support of this integral?

(1) Causality: $z^{2} \geq 0$
(2) $q z=\frac{z^{+} \nu}{p^{+}}-z^{-} x_{B} p^{+}, \quad \nu=p q \rightarrow \infty$ in Bj. lim.
(3) Riemann-Lebesgue: $\int d^{n} z f(z) e^{-i \eta z} \xrightarrow{|\eta| \rightarrow \infty} 0$
(9) qz must be small $\Rightarrow z^{+} \sim p^{+} / \nu \sim 0, \quad z^{-} \sim$ const $/\left(x_{B} p^{+}\right)$
(3) $q z \sim$ const $<\infty$
(0) $z^{2} \sim z_{\perp}^{2}=-\left(\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}\right) \leq 0$
(1) (1) $+(6) \rightarrow z^{2} \sim 0 \Rightarrow$ DIS is light-cone dominated

HERA's PDFs

H1 and ZEUS Combined PDF Fit

- HERA = Hadron-Electron Ring Accelerator, at DESY in Germany
- Measurements of PDFs are key for experiments and calculations where hadrons play a role: pp collisions at the LHC are a primary example

HERA's PDFs

- At small-x, there must be a saturation scale Q_{s}^{2} for which gluon splitting and fusion rates become equal and the gluon distribution for momentum xg stops growing:

Deeply virtual Compton scattering (DVCS)

- In the late 1990s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through the DVCS process:

Feynman diagram for DVCS

- It is an exclusive scattering
- $\xi=\frac{-\bar{q} \Delta}{2 \bar{p} \bar{q}}, \quad \bar{q}=\frac{q+q^{\prime}}{2}, \quad \bar{p}=\frac{p+p^{\prime}}{2}, \quad \Delta=p^{\prime}-p, \quad t=\Delta^{2}$

Relevance of the GPDs

- Connected to QCD energy-momentum tensor, and so to spin. GPDs are a way to address the hadron's spin puzzle. Ji's sum rule:

$$
\int_{-1}^{1} d x x\left[H_{f}(x, \xi, 0)+E_{f}(x, \xi, 0)\right]=2 J_{f}
$$

- Tomography: distribution of quarks in terms of the longitudinal momentum and in the transverse plane,

$$
q_{f}\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \boldsymbol{\Delta}}{4 \pi^{2}} e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}} H_{f}\left(x, 0, t=-\boldsymbol{\Delta}^{2}\right)
$$

But how do GPDs appear?

DVCS amplitude

- To 1st order in α_{em} and under collinear factorization $\left(\mathcal{O}\left(\frac{\ell_{\perp}^{2}}{Q^{2}}, \frac{\Delta_{\perp}^{2}}{Q^{2}}, \frac{\ell_{\perp} \Delta_{\perp}}{Q^{2}}, \frac{\ell^{-} \bar{\rho}^{+}}{Q^{2}}\right)\right.$ neglected):

$$
\begin{aligned}
& \left\langle\gamma\left(q^{\prime}\right) N\left(p^{\prime}\right)\right| \mathcal{S}^{(2)}\left|\gamma^{*}(q) N(p)\right\rangle=-3 i(2 \pi)^{4} \delta\left(p+q-p^{\prime}-q^{\prime}\right) \sum_{f} e_{f}^{2}\left(\varepsilon_{q \lambda}\right) \alpha\left(\varepsilon_{q^{\prime} \lambda^{\prime}}^{*}\right)_{\beta} \\
& \times g_{\perp}^{\alpha \beta} \int_{-1}^{1} d x\left(\frac{1}{x-\xi+i 0}+\frac{1}{x+\xi-i 0}\right) \underbrace{\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{p}^{+} z^{-}}\left\langle N\left(p^{\prime}\right)\right| \bar{q}_{f}(-z / 2) \gamma^{+} \mathfrak{q}_{f}(z / 2)|N(p)\rangle\right|_{\begin{array}{c}
z^{+}=0 \\
z_{\perp}=0
\end{array}}}_{\text {GPD }}
\end{aligned}
$$

+ (axial term)
- GPD factorization happens in the amplitude as opposed to the factorization in cross-section via PDFs
- GPD $\simeq 3 \mathrm{D}$ version of a PDF

GPD \& Compton Form Factor (CFF)

- CFF definition from our previous result $\left(t=\Delta^{2}\right)$,

$$
\begin{array}{rl}
\operatorname{CFF}(\xi, t)=\mathcal{H}_{f}(\xi, t)=\int_{-1}^{1} d & x \underbrace{\left(\frac{1}{x-\xi+i 0}+\frac{1}{x+\xi-i 0}\right)}_{\text {Coefficient function, } C_{f}(x, \xi), \text { perturbative component }} \\
\times & \underbrace{H_{f}(x, \xi, t)}_{\text {a particular } \operatorname{GPD}(x, \xi, t), \text { non-perturbative function }}
\end{array}
$$

- In observables, GPDs will appear hidden inside CFFs

The need to go beyond DVCS

- LO amplitude for DVCS restricts the access to GPDs to the line $x=\xi$:

$\operatorname{CFF}_{\mathrm{DVCS}} \sim \operatorname{PV}\left(\int_{-1}^{1} d x \frac{1}{x-\xi} \operatorname{GPD}(x, \xi, t)\right)-\int_{-1}^{1} d x i \pi \delta(x-\xi) \operatorname{GPD}(x, \xi, t)+\cdots$
- Let us take a look at other processes that may solve this problem

Timelike Compton scattering (TCS)

- "Mirror" image of DVCS:

Feynman diagram for TCS

- GPDs enter the LO amplitude of TCS via the CFFs:

$$
\operatorname{CFF}_{\mathrm{TCS}} \sim \operatorname{PV}\left(\int_{-1}^{1} d x \frac{1}{x+\xi} \operatorname{GPD}(x, \xi, t)\right)-\int_{-1}^{1} d x i \pi \delta(x+\xi) \operatorname{GPD}(x, \xi, t)+\cdots
$$

- 1st measurement of TCS by the CLAS collaboration at JLab: P. Chatagnon et al., PRL 127, 262501 (2021)

Double deeply virtual Compton scattering (DDVCS)

- An extra virtuality with respect to DVCS and TCS to escape the $x= \pm \xi$ lines:

DDVCS (left), BH diagrams (middle and right). Crossed diagrams are not shown

- GPDs enter the DDVCS amplitude at LO via CFFs:

$$
\begin{gathered}
\operatorname{CFF}_{\text {DDVCS }} \sim \operatorname{PV}\left(\int_{-1}^{1} d x \frac{1}{x-\rho} \operatorname{GPD}(x, \xi, t)\right)-\int_{-1}^{1} d x i \pi \delta(x-\rho) \operatorname{GPD}(x, \xi, t)+\cdots \\
\rho=-\frac{\bar{q}^{2}}{2 \bar{p} \bar{q}}, \quad \xi=\frac{-\bar{q} \Delta}{2 \bar{p} \bar{q}}
\end{gathered}
$$

Original papers in DDVCS: Belitsky \& Muller, PRL 90, 022001 (2003); Guidal \& Vanderhaeghen, PRL 90, 012001 (2003); Belitsky \& Muller, PRD 68, 116005 (2003)

DDVCS subprocess

- DDVCS subprocess amplitude:

$$
i \mathcal{M}_{\mathrm{DDVCS}}=\frac{i e^{4} \bar{u}\left(\ell_{-}, s_{\ell}\right) \gamma_{\mu} v\left(\ell_{+}, s_{\ell}\right) \bar{u}\left(k^{\prime}, s\right) \gamma_{\nu} u(k, s)}{\left(q^{2}+i 0\right)\left(q^{\prime 2}+i 0\right)} T_{s_{2} s_{1}}^{\mu \nu}
$$

- Compton tensor decomposition at LT:

$$
\begin{gathered}
T_{s_{2} s_{1}}^{\mu \nu}=T^{(V) \mu \nu} \bar{u}\left(p^{\prime}, s_{2}\right)\left[(\mathcal{H}+\mathcal{E}) \pitchfork-\frac{\mathcal{E}}{M} \bar{p}^{+}\right] u\left(p, s_{1}\right)+T^{(A) \mu \nu} \bar{u}\left(p^{\prime}, s_{2}\right)\left[\widetilde{\mathcal{H}} \nmid+\frac{\widetilde{\mathcal{E}}}{2 M} \Delta^{+}\right] \gamma^{5} u\left(p, s_{1}\right) \\
T^{(V) \mu \nu}=-\frac{1}{2}\left(g^{\mu \nu}-n^{\mu} n^{\star \nu}-n^{\nu} n^{\star \mu}\right) \equiv-\frac{1}{2} g_{\perp}^{\mu \nu} \\
T^{(A) \mu \nu}=-\frac{i}{2} \epsilon^{\mu \nu}{ }_{\rho \sigma} n^{\rho} n^{\star \sigma} \equiv-\frac{i}{2} \epsilon_{\perp}^{\mu \nu}
\end{gathered}
$$

- Longitudinal plane is built with $\{\bar{q}, \bar{p}\}$
- $q_{\perp}^{\nu} \sim \Delta_{\perp}^{\nu} \Rightarrow g_{\perp}^{\mu \nu} q_{\nu} \neq 0 \Rightarrow$ EM gauge-violation

DDVCS subprocess

- Longitudinal plane is built with $\{\bar{q}, \bar{p}\}$
- $q_{\perp}^{\nu} \sim \Delta_{\perp}^{\nu} \Rightarrow g_{\perp}^{\mu \nu} q_{\nu} \neq 0 \Rightarrow$ EM gauge-violation
- Gauge-violation can be cured by evaluating the hard part of the process at $t=t_{0}\left(\left|t_{0}\right| \leq|t|\right)$:

$$
\left.\left.q_{\perp}^{\nu}\right|_{t=t_{0}} \sim \Delta_{\perp}^{\nu}\right|_{t=t_{0}}=0
$$

- This procedure is consistent with the collinear factorization which is at the core of the GPD description

Kleiss-Stirling (KS) techniques

- Avoid computation of traces of gamma-matrices
- Address amplitude first instead of its modulus squared
- Reduce amplitudes to complex-numbers
- 2 scalars as building blocks, a and b as light-like vectors:

$$
\begin{gathered}
s(a, b)=\bar{u}(a,+) u(b,-)=-s(b, a) \\
t(a, b)=\bar{u}(a,-) u(b,+)=[s(b, a)]^{*} \\
s(a, b)=\left(a^{2}+i a^{3}\right) \sqrt{\frac{b^{0}-b^{1}}{a^{0}-a^{1}}}-(a \leftrightarrow b)
\end{gathered}
$$

Kleiss \& Stirling, Nucl. Phys. B 262 (1985) 235-262

DDVCS subprocess à la KS

- DDVCS subprocess amplitude:

$$
i \mathcal{M}_{\mathrm{DDVCS}}=\frac{-i e^{4}}{\left(Q^{2}-i 0\right)\left(Q^{\prime 2}+i 0\right)}\left(i \mathcal{M}_{\mathrm{DDVCS}}^{(V)}+i \mathcal{M}_{\mathrm{DDVCS}}^{(A)}\right)
$$

- Vector contribution:

$$
\begin{aligned}
i \mathcal{M}_{\mathrm{DDVCS}}^{(V)} & =-\frac{1}{2}\left[f\left(s_{\ell}, \ell_{-}, \ell_{+} ; s, k^{\prime}, k\right)-g\left(s_{\ell}, \ell_{-}, n^{\star}, \ell_{+}\right) g\left(s, k^{\prime}, n, k\right)-g\left(s_{\ell}, \ell_{-}, n, \ell_{+}\right) g\left(s, k^{\prime}, n^{\star}, k\right)\right] \\
& \times\left[(\mathcal{H}+\mathcal{E})\left[Y_{s_{2} s_{1}} g\left(+, r_{s_{2}}^{\prime}, n, r_{s_{1}}\right)+Z_{s_{2} s_{1}} g\left(-, r_{-s_{2}}^{\prime}, n, r_{-s_{1}}\right)\right]-\frac{\mathcal{E}}{M} \mathcal{J}_{s_{2} s_{1}}^{(2)}\right]
\end{aligned}
$$

- Axial contribution:

$$
i \mathcal{M}_{\mathrm{DDVCS}}^{(A)}=\frac{-i}{2} \epsilon_{\perp}^{\mu \nu} j_{\mu}\left(s_{\ell}, \ell_{-}, \ell_{+}\right) j_{\nu}\left(s, k^{\prime}, k\right)\left[\widetilde{\mathcal{H}} \mathcal{J}_{5_{2} s_{1}}^{(1,5)+}+\widetilde{\mathcal{E}} \frac{\Delta^{+}}{2 M} \mathcal{J}_{s_{2} s_{1}}^{(2,5)+}\right]
$$

More details in:
K. Deja, V. Martínez-Fernández, B. Pire, P. Sznajder, J. Wagner, PRD 107 (2023), no. 9, 094035

DVCS \& TCS limits of DDVCS

Comparison of DDVCS and (left) DVCS and (right) TCS cross-sections for pure VCS subprocess. GK model for GPDs.

Trento: PRD 70, 117504 (2004); BDP: EPJC23, 675 (2002)

Observables in DDVCS: beam-spin asymmetry

- Single beam-spin asymmetry for longitudinally polarized electrons:

$$
\begin{gathered}
A_{L U}\left(\phi_{\ell, \mathrm{BDP}}\right)=\frac{\Delta \sigma_{L U}\left(\phi_{\ell, \mathrm{BDP}}\right)}{\sigma U U\left(\phi_{\ell, \mathrm{BDP}}\right)} \\
\Delta \sigma_{L U}\left(\phi_{\ell, \mathrm{BDP}}\right)=\int_{0}^{2 \pi} d \phi \int_{\pi / 4}^{3 \pi / 4} d \theta_{\ell, \mathrm{BDP}} \sin \theta_{\ell, \mathrm{BDP}} \\
\times\left(\frac{d^{7} \sigma \rightarrow}{d x_{B} d Q^{2} d Q^{\prime 2} d|t| d \phi d \Omega_{\ell, \mathrm{BDP}}}-\frac{d^{7} \sigma^{\leftarrow}}{d x_{B} d Q^{2} d Q^{\prime 2} d|t| d \phi d \Omega_{\ell, \mathrm{BDP}}}\right)
\end{gathered}
$$

- We consider $Q^{\prime 2}>Q^{2}$: our DDVCS is "more" timelike than spacelike
- Variable for later use:

$$
y=\frac{p q}{p k} \underbrace{=}_{\substack{\text { proton } \\ \text { rest } \\ \text { frame }}} \frac{E-E^{\prime}}{E},
$$

$E=$ energy of incoming electron beam, $E^{\prime}=$ energy of recoiled electron

Observables in DDVCS: beam-spin asymmetry

JLab12, JLab20+: 15-20\%

Experiment	Beam energies $[\mathrm{GeV}]$	y	$\|t\|$ $\left[\mathrm{GeV}^{2}\right]$	Q^{2} $\left[\mathrm{GeV}^{2}\right]$	$Q^{\prime 2}$ $\left[\mathrm{GeV}^{2}\right]$
JLab12	$E_{e}=10.6, E_{p}=M$	0.5	0.2	0.6	2.5
JLab20 +	$E_{e}=22, E_{p}=M$	0.3	0.2	0.6	2.5
EIC	$E_{e}=5, E_{p}=41$	0.15	0.1	0.6	2.5
EIC	$E_{e}=10, E_{p}=100$	0.15	0.1	0.6	2.5

EIC 5×41, EIC $10 \times 100: 3-7 \%$

Monte Carlo study: distribution in y (DDVCS)

JLab12, JLab20+

EIC 5×41, EIC 10×100

10000 events/distribution. Neither acceptance nor detectors response are taken into account in this study

Experiment	Beam energies $[\mathrm{GeV}]$	Range of $\|t\|$ $\left[\mathrm{GeV}^{2}\right]$	$\left.\sigma\right\|_{0<y<1}$ $[\mathrm{pb}]$	$\left.\mathcal{L}^{10 \mathrm{k}}\right\|_{0<y<1}$ $\left[\mathrm{fb}^{-1}\right]$	$y_{\text {min }}$	$\left.\sigma\right\|_{y_{\text {min }}<y<1 /\left.\sigma\right\|_{0<y<1}}$
JLab12	$E_{e}=10.6, E_{p}=M$	$(0.1,0.8)$	0.14	70	0.1	
JLab20+	$E_{e}=22, E_{p}=M$	$(0.1,0.8)$	0.46	22	0.1	1
EIC	$E_{e}=5, E_{p}=41$	$(0.05,1)$	3.9	2.6	0.05	0.73
EIC	$E_{e}=10, E_{p}=100$	$(0.05,1)$	4.7	2.1	0.05	0.32

EpIC MC

integrated cross-section pure DDVCS fraction

Kinematic cuts: $Q^{2} \in(0.15,5) \mathrm{GeV}^{2}$ $Q^{\prime 2} \in(2.25,9) \mathrm{GeV}^{2}$ JLab: $-t \in(0.1,0.8) \mathrm{GeV}^{2}$ $\mathrm{EIC}:-t \in(0.01,1) \mathrm{GeV}^{2}$ $\phi, \phi_{\ell} \in(0.1,2 \pi-0.1) \mathrm{rad}$ $\theta_{\ell} \in(\pi / 4,3 \pi / 4) \mathrm{rad}$ JLab: $y \in(0.1,1)$
EIC: $y \in(0.05,1)$

Worldwide picture

experiments

closed active planned

Image courtesy of Paweł Sznajder

Worldwide picture

experiments

closed active planned

More info about JLab20+: A. Accardi et al., arXiV: nucl-ex/2306.09360

Worldwide picture

experiments

closed active planned

More info about EIC: R. Abdul Khalek et al., Nucl. Phys. A 1026 (2022) 122447 (Yellow Report)

Summary

- DIS and PDF have been explained and related
- GPDs as a 3D version of the PDFs have been introduced via exclusive inelastic scattering
- I have shown how DDVCS allows to map GPDs on their whole domain, i.e., $x \neq \xi$. Full knowledge of GPDs is fundamental in order to:
(1) Understand the different sources for the spin of the hadron
(2) Perform transverse imagining (tomography)
- The latest results in both the theoretical and phenomenological aspects of DDVCS have been discussed
- New experiments are ahead: EIC (and maybe JLab20+?)

Thank you!

Complementary slides

Light-cone coordinates

- A way to parameterize 4 -vectors:

$$
\begin{gathered}
z^{\mu}=z^{-} n^{\mu}+z^{+} n^{\prime \mu}+z_{\perp}^{\mu} \\
n^{2}=n^{\prime 2}=0, \quad n n^{\prime} \neq 0 \\
z_{\perp} n=z_{\perp} n^{\prime}=0
\end{gathered}
$$

- n, n^{\prime} define the "minus" and "plus" longitudinal directions, respectively

Wilson line

- It restores the gauge invariance of the PDF,

$$
\mathcal{W}\left[z_{1}^{-}, z_{2}^{-}\right]=\mathbb{P} \exp \left[i g \int_{z_{2}^{-}}^{z_{1}^{-}} d a^{-} A^{+}\left(a^{-}\right)\right]
$$

- It is the result of resummming contributions to leading twist $\left(\mathcal{O}\right.$ (constant $\left./ Q^{2}\right)$ neglected) from gluon exchanges between the hard part (parton-photon interaction) and the soft part (non-active partons):

Diagram for a Wilson line

- Under the gauge $A^{+}=0, \mathcal{W} \equiv 1$ and can be disregarded

DVCS amplitude

- Photon-proton interaction, to order ${ }^{\dagger} \mathcal{O}\left(\alpha_{\mathrm{em}}\right)$:

$$
\begin{aligned}
& \left\langle\gamma\left(q^{\prime}\right) N\left(p^{\prime}\right)\right| \mathcal{S}^{(2)}\left|\gamma^{*}(q) N(p)\right\rangle=\frac{3}{4}(2 \pi)^{4} \delta\left(p+q-p^{\prime}-q^{\prime}\right)\left(\varepsilon_{q \lambda}\right)_{\alpha}\left(\varepsilon_{q^{\prime} \lambda^{\prime}}^{*}\right)_{\beta} \\
& \quad \times \sum_{f} e_{f}^{2} \int d^{4} \ell \frac{d^{4} z}{(2 \pi)^{4}} e^{i \ell z} \operatorname{tr}\left\{\left[\gamma^{\beta} \frac{i(\ell+q)}{(\ell+q)^{2}+i 0} \gamma^{\alpha}+\gamma^{\alpha} \frac{i\left(\ell-q^{\prime}\right)}{\left(\ell-q^{\prime}\right)^{2}+i 0} \gamma^{\beta}\right] \gamma^{\mu}\right\} \\
& \quad \times\left\langle N\left(p^{\prime}\right)\right|: \overline{\mathfrak{q}}_{f}(0) \gamma_{\mu} \mathfrak{q}_{f}(z):|N(p)\rangle \\
& \quad+(\text { axial term })
\end{aligned}
$$

- ℓ is the 4 -momentum of the active parton
- $\varepsilon_{q \lambda}$ is the polarization vector of the photon with momentum q and polarization λ
${ }^{\dagger} e_{f}^{2}=e^{2} Q_{f}^{2}, Q_{f}=$ quark's fraction of proton electric charge

DVCS amplitude

- Momentum can be parameterized with the following variables:
(1) x, the fraction of the hadron longitudinal momentum that is carried away by the parton
(2) $\xi=-\frac{\Delta \bar{q}}{2 \bar{q} \bar{q}}$, called skewness

$$
\left(\bar{p}=\left(p+p^{\prime}\right) / 2, \Delta=p^{\prime}-p, \bar{q}=\left(q+q^{\prime}\right) / 2\right)
$$

- This way, for instance,

$$
\begin{gathered}
\left(\ell-q^{\prime}\right)^{\mu}=(x-\xi) \bar{p}^{+} n^{\prime \mu}+\left(\ell^{-}-\frac{Q^{2}}{4 \xi \bar{p}^{+}}\right) n^{\mu}+\ell_{\perp}+\Delta_{\perp} \\
\left(\ell-q^{\prime}\right)^{2}=-(x-\xi) \frac{Q^{2}}{2 \xi}+\underbrace{\mathcal{O}\left(\frac{\ell_{\perp}^{2}}{Q^{2}}, \frac{\Delta_{\perp}^{2}}{Q^{2}}, \frac{\ell_{\perp} \Delta_{\perp}}{Q^{2}}, \frac{\ell^{-} \bar{p}^{+}}{Q^{2}}\right)}_{\text {Neglecting transverse dynamics renders collinear factorization }}
\end{gathered}
$$

- Collinear factorization is justified on Q^{2} being the scale of the process and, therefore, larger than any other momentum

GPDs of a spin- $1 / 2$ hadron

- Further decomposition of the correlator that has been called the GPD so far $\left(t=\Delta^{2}\right)$:

$$
\begin{aligned}
& F_{f}=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i \times \bar{p}^{+} z^{-}}\left\langle N\left(p^{\prime}\right)\right| \overline{\mathfrak{q}}_{f}(-z / 2) \gamma^{+} \mathfrak{q}_{f}(z / 2)|N(p)\rangle\right|_{\begin{array}{c}
z^{+}=0 \\
z_{\perp}=0
\end{array}} \\
& =\frac{1}{2 \bar{p}^{+}}\left[H_{f}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p)+E_{f}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u(p)\right], \\
& \sigma^{\beta \alpha}=\frac{i}{2}\left[\gamma^{\beta}, \gamma^{\alpha}\right]
\end{aligned}
$$

- Technically, the GPDs are H_{f} and E_{f}, although F_{f} is usually referred to as the GPD too. As usual, it is a matter of context...
- The axial term give rise similarly to another two GPDs: \widetilde{H}_{f} and \widetilde{E}_{f}

Kleiss-Stirling (KS) techniques

- Define a massless spinor basis $\left\{u\left(\kappa_{0}, \pm\right)\right\}$ for momentum $\kappa_{0}^{2}=0$ and helicity \pm. The negative-helicity state is defined by:

$$
\bar{u}\left(\kappa_{0},-\right) u\left(\kappa_{0},-\right)=\omega_{-} \kappa, \quad \omega_{\lambda}=\frac{1}{2}\left(1+\lambda \gamma^{5}\right)
$$

- Define a spacelike vector $\kappa_{1}^{2}=-1$ such that $\kappa_{0} \kappa_{1}=0$, then the positive-helicity state is:

$$
u\left(\kappa_{0},+\right)=\kappa / 1 u\left(\kappa_{0},-\right)
$$

Kleiss-Stirling (KS) techniques

- For any spinor associated to a massless fermion of momentum p, imposing Dirac equation, projection

$$
u(p, \lambda) \bar{u}(p, \lambda)=\omega_{\lambda} \not p, \quad \lambda= \pm
$$

and using spinor basis above, one finds:

$$
u(p, \lambda)=\frac{p u\left(\kappa_{0},-\lambda\right)}{\sqrt{2 p \kappa_{0}}}
$$

- The only restriction to this formula is $p \kappa_{0} \neq 0$ and, for computer purposes, not extremely small
- Massive spinors can be expanded by means of the massless ones described here

Kleiss \& Stirling, Nucl. Phys. B 262 (1985) 235-262

DDVCS subprocess à la KS

- $f=$ contraction of 2 currents

$$
\begin{aligned}
& f\left(\lambda, k_{0}, k_{1} ; \lambda^{\prime}, k_{2}, k_{3}\right)=\bar{u}\left(k_{0}, \lambda\right) \gamma^{\mu} u\left(k_{1}, \lambda\right) \bar{u}\left(k_{2}, \lambda^{\prime}\right) \gamma_{\mu} u\left(k_{3}, \lambda^{\prime}\right)=2\left[s\left(k_{2}, k_{1}\right) t\left(k_{0}, k_{3}\right) \delta_{\lambda-} \delta_{\lambda^{\prime}+}\right. \\
& \left.\quad+t\left(k_{2}, k_{1}\right) s\left(k_{0}, k_{3}\right) \delta_{\lambda+} \delta_{\lambda^{\prime}-}+s\left(k_{2}, k_{0}\right) t\left(k_{1}, k_{3}\right) \delta_{\lambda+} \delta_{\lambda^{\prime}+}+t\left(k_{2}, k_{0}\right) s\left(k_{1}, k_{3}\right) \delta_{\lambda-} \delta_{\lambda^{\prime}-}\right]
\end{aligned}
$$

- $g=$ contraction of a current with a lightlike vector a

$$
g(s, \ell, a, k)=\bar{u}(\ell, s) \notin u(k, s)=\delta_{s+} s(\ell, a) t(a, k)+\delta_{s-} t(\ell, a) s(a, k)
$$

- BH diagrams can be treated in a similar manner

More details in:
K. Deja, V. Martínez-Fernández, B. Pire, P. Sznajder, J. Wagner, PRD 107 (2023), no. 9, 094035

DVCS limit of DDVCS

- DDVCS to DVCS:

DDVCS (left), DVCS (right)

$$
\begin{aligned}
& \int d \Omega_{\ell} \underbrace{\frac{d^{7} \sigma}{d x_{B} d Q^{2} d Q^{\prime 2} d|t| d \phi d \Omega_{\ell}}}_{\text {DDVCS }} \stackrel{Q^{\prime 2} \rightarrow 0}{\left(\frac{d^{4} \sigma}{\left(\frac{x_{B} d Q^{2} d|t| d \phi}{}\right.}\right)} \frac{\mathcal{N}}{Q^{\prime 2}} \\
& \mathcal{N}=\alpha_{\mathrm{em}} /(3 \pi)
\end{aligned}
$$

TCS limit of DDVCS

- DDVCS to TCS:

DDVCS (left), TCS (right)

$$
\begin{gathered}
\int d \phi \underbrace{\frac{d^{7} \sigma}{d x_{B} d Q^{2} d Q^{\prime 2} d|t| d \phi d \Omega_{\ell}}}_{\text {DDVCS }} \stackrel{Q^{2} \rightarrow 0}{\longrightarrow} \underbrace{\left(\frac{d^{4} \sigma}{d Q^{\prime 2} d|t| d \Omega_{\ell}}\right)}_{\text {TCS }} \underbrace{\frac{d^{2} \Gamma}{d x_{B} d Q^{2}}}_{\substack{\text { EPA photon } \\
\text { flux }}} \\
\frac{d^{2} \Gamma}{d x_{B} d Q^{2}}=\frac{\alpha_{\text {em }}}{2 \pi Q^{2}}\left(1+\frac{(1-y)^{2}}{y}-\frac{2(1-y) Q_{\min }^{2}}{y Q^{2}}\right) \frac{\nu}{E x_{B}} \leftarrow \text { EPA photon-flux }
\end{gathered}
$$

Models for the C-even part of GPD H^{q}

Distributions of $\sum_{q} e_{q}^{2} H^{q(+)}(x, \xi, t)$ at $t=-0.1 \mathrm{GeV}^{2}$, where $q=u, d, s$ flavors for (left) $\xi=x$, (middle) $\xi=0.1$ and (right) $\xi=0.5$. The solid black, dashed red and dotted green curves describe the GK, VGG and MMS GPD models, respectively. The C-even part of a given vector GPD is defined as: $H^{q(+)}(x, \xi, t)=H^{q}(x, \xi, t)-H^{q}(-x, \xi, t)$. The scale is chosen as $\mu_{F}^{2}=4 \mathrm{GeV}^{2}$.

