Deeply virtual scattering in QCD

Víctor Martínez-Fernández

PhD student at the National Centre for Nuclear Research (NCBJ, Warsaw, Poland)

Outline

- Standard model: EW + QCD
- QCD \rightarrow deep inelastic scattering (DIS)
- Deeply virtual Compton scattering (DVCS) and collinear factorization:
 - The $x = \xi$ restriction
- Timelike Compton scattering (TCS)
- Double deeply virtual Compton scattering (DDVCS):
 - $x \neq \xi$ solution
 - Kleiss & Stirling (KS) techniques
 - Latest results on theory and phenomenology
- Experiments around the globe
- Summary

Standard model

Modern particle physics = Standard model:

- *SU*(3)_c: strong interactions = quarks and gluons (*partons*) coupled to form hadrons
- Quarks and gluons: elementary, free asymptotically only
- Hadrons: composite objects, the states you find in nature

- "Hitting" hadrons with high-energy particles: (virtual) photon
- Mid 1950s: SLAC proves the proton to be an extended object (elastic scattering)
- Late 1960s: SLAC & MIT prove the composite nature of the proton via **inelastic** scattering:
 - Inclusive: **no control over all** final state particles
 - 2 Exclusive: full control over all final state particles

Elastic scattering of electron and proton at SLAC

Plot from: R. Hofstader & R. W. McAllister, Phys. Rev. 98, 217 (1955)

Mott xsec: spinless and pointlike target

$$\frac{\frac{d\sigma}{d\Omega}}{\left|_{\text{Mott}}} = \underbrace{\frac{Z^2 \alpha_{\text{em}}^2}{4E^2 \sin^2(\theta/2)}}_{\text{Rutherford}} \cos^2(\theta/2)$$

Rosenbluth xsec: spin-1/2 and pointlike target

$$\left. \frac{d^2\sigma}{d\Omega dE'} \right|_{\substack{\text{Ros,}\\\text{point}}} \!\!\!\!\!\!= \! \left. \frac{d\sigma}{d\Omega} \right|_{\text{Mott}} \!\!\!\!\left[1 \!+\! 2 \frac{Q^2}{4M^2} \tan^2(\theta/2) \right]$$

$$\times \delta\left(\frac{Q^2}{2M}-\nu\right), \ \nu=E-E'$$

Rosenbluth xsec: spin-1/2 and extended target

$$\begin{split} & \left. \frac{d^2\sigma}{d\Omega dE'} \right|_{\substack{\text{Ros.} \\ \text{extended}}} = \frac{d\sigma}{d\Omega} \right|_{\text{Mott}} \left[F_E^2(|\vec{q}|^2) + 2\frac{Q^2}{4M^2} \tan^2(\theta/2) F_M^2(|\vec{q}|^2) \right] \delta\left(\frac{Q^2}{2M} - \nu \right) \end{split}$$

Elastic scattering of electron and proton at SLAC

Plot from: R. Hofstader & R. W. McAllister, Phys. Rev. 98, 217 (1955)

Rosenbluth xsec: spin-1/2 and extended target

$$\begin{aligned} \left. \frac{d^2 \sigma}{d\Omega dE'} \right|_{\substack{\text{Ros,} \\ \text{extended}}} = \left. \frac{d\sigma}{d\Omega} \right|_{\text{Mott}} \left[F_E^2(|\vec{q}|^2) \right. \\ \left. + 2 \frac{Q^2}{4M^2} \tan^2(\theta/2) F_M^2(|\vec{q}|^2) \right] \delta\left(\frac{Q^2}{2M} - \nu \right) \end{aligned}$$

• Taking the proton to be an extended object of radius $\sim 10^{-13}$ cm with spin-1/2 fits the experimental data

Deep ineslastic scattering (DIS)

Feynman graph for DIS

• DIS: inclusive experiment breaking the proton

$$d\sigma_{
m DIS} \sim L^{\mu
u} W_{\mu
u}$$

- $L^{\mu
 u}
 ightarrow pQED$ tensor, calculable
- $W_{\mu\nu} \rightarrow$ non-trivial QCD part: perturbative coefficient function convoluted with a non-perturbative term (PDF)

Deep ineslastic scattering (DIS)

$$d\sigma_{
m DIS} \sim L^{\mu
u} W_{\mu
u}$$

• $W_{\mu\nu} \rightarrow$ optical theorem:

 $\sum_X \int_X |X
angle \langle X|{=}1 \leftrightarrow ext{ inclusiveness in practice}$

Feynman graph for DIS

Form factors & geometric shape

• DIS cross-section in terms of form factors (F_1, F_2) :

$$\frac{d^2\sigma}{d\Omega dE'}\Big|_{\text{DIS}} = \frac{d\sigma}{d\Omega}\Big|_{\text{Mott}} \cdot \left[\frac{1}{\nu}F_2(x,Q^2) + \frac{2}{M}\tan^2(\theta/2)F_1(x,Q^2)\right],$$
$$x = \frac{Q^2}{2pq} \underbrace{=}_{\substack{\text{proton}\\\text{rest}\\\text{frame}}} \frac{Q^2}{2M\nu} \leftrightarrow \text{ Björken variable},$$
$$\nu = E - E'$$

• If F_1 , F_2 are independent of Q^2 , then DIS results on scattering on pointlike particles and the proton is not elementary:

spatial distribution:
$$ho_j(\vec{r}) \sim \int d^3 \vec{q} \ e^{i \vec{q} \vec{r}} F_j(x, |\vec{q}|^2)$$
, $|\vec{q}|^2 = Q^2$

• If $F_j(x,|ec{q}|^2)=f_j(x)$, then $ho_j(ec{r})\sim\delta(ec{r})f_j(x)\Rightarrow$ pointlike target

DIS at SLAC-MIT

- W is the invariant mass of the recoiling target system (X in the graph for DIS)
- W = 3 and 3.5 GeV: the (almost) independence with q² suggests scattering off elementary particles (pointlike or very small) particles

Plot from: M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

More from SLAC

Plot taken from Carolina Riedl's talk at the 61 Cracow summer school of theoretical physics: Electron-Ion Collider physics (2021). F_2^p means F_2 for the proton

 Almost independent of Q²: very small particles inside the proton that are interacting with each other, i.e.,

$$F_2(x,Q^2) \sim F_2(x)$$

• Dependence on $Q^2 \rightarrow$ DGLAP and gluons

Parton Distribution Function (PDF)

• DIS cross-section can be factorized via PDFs as

$$\sigma_{\gamma N \to X} = \sum_{f} \int_{0}^{1} dx \ \sigma_{\gamma q_{f} \to X}(x) \text{PDF}_{f}(x), \quad f = \text{flavor},$$

x=longitudinal momentum fraction,

in the Björken limit: $Q^2
ightarrow \infty$, x fixed

For PDFs, x coincides with the Björken variable: x_B = Q²/2pq
PDF is a 1D distribution:

$$\operatorname{PDF}_{f}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{p}^{+}z^{-}} \langle N(p) | \bar{\mathfrak{q}}_{f}(-z/2)\gamma^{+} \mathcal{W}[-z/2,z/2]\mathfrak{q}_{f}(z/2) | N(p) \rangle \Big|_{z_{\perp}=z^{+}=0}$$

•
$$z^+, z^-, z_\perp$$
: light-cone coordinates

• \mathcal{W} : Wilson line

Light-cone dominance

• In PDF: $z^2 = 2z^+z^- + z_{\perp}^2 \xrightarrow{z^+=z_{\perp}=0} 0$, but why? • PDF comes from $W_{\mu\nu}$:

$$4\pi W_{\mu
u}=\int d^4z\,\,e^{iqz}\langle p|j_\mu(z)j_
u(0)|p
angle$$

Light-cone dominance

$$4\pi W_{\mu
u} = \int d^4 z \; e^{iqz} \langle p|j_\mu(z)j_
u(0)|p
angle$$

What's the support of this integral?

• Causality:
$$z^2 \ge 0$$

2
$$qz = \frac{z^+\nu}{p^+} - z^- x_B p^+$$
, $\nu = pq \to \infty$ in Bj. lim.

3 Riemann-Lebesgue:
$$\int d^n z \ f(z) e^{-i\eta z} \xrightarrow{|\eta| \to \infty} 0$$

• qz must be small \Rightarrow $z^+ \sim p^+/\nu \sim 0$, $z^- \sim {\rm const}/(x_B p^+)$

5
$$qz \sim \text{const} < \infty$$

6
$$z^2 \sim z_\perp^2 = -((z^1)^2 + (z^2)^2) \leq 0$$

(1) + (6) $\rightarrow z^2 \sim 0 \Rightarrow$ DIS is light-cone dominated

HERA's PDFs

- HERA =
 - Hadron-Electron Ring Accelerator, at DESY in Germany
- Measurements of PDFs are key for experiments and calculations where hadrons play a role: pp collisions at the LHC are a primary example

HERA's PDFs

• At small-x, there must be a saturation scale Q_s^2 for which gluon splitting and fusion rates become equal and the gluon distribution for momentum xg stops growing:

Deeply virtual Compton scattering (DVCS)

 In the late 1990s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through the DVCS process:

Feynman diagram for DVCS

• It is an exclusive scattering

•
$$\xi = \frac{-\bar{q}\Delta}{2\bar{p}\bar{q}}$$
, $\bar{q} = \frac{q+q'}{2}$, $\bar{p} = \frac{p+p'}{2}$, $\Delta = p'-p$, $t = \Delta^2$

Relevance of the GPDs

• Connected to QCD energy-momentum tensor, and so to spin. GPDs are a way to address the hadron's **spin puzzle.** Ji's sum rule:

$$\int_{-1}^{1} dx \ x[H_f(x,\xi,0) + E_f(x,\xi,0)] = 2J_f$$

• **Tomography:** distribution of quarks in terms of the longitudinal momentum and in the transverse plane,

$$q_f(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}} H_f(x,0,t=-\mathbf{\Delta}^2)$$

But how do GPDs appear?

DVCS amplitude

+ (axial term)

- GPD factorization happens in the amplitude as opposed to the factorization in cross-section via PDFs
- GPD \simeq 3D version of a PDF

GPD & Compton Form Factor (CFF)

• CFF definition from our previous result ($t = \Delta^2$),

$$\mathsf{CFF}(\xi,t) = \mathcal{H}_{\mathbf{f}}(\xi,t) = \int_{-1}^{1} dx \, \underbrace{\left(\frac{1}{x-\xi+i0} + \frac{1}{x+\xi-i0}\right)}_{}$$

Coefficient function, $C_f(x,\xi)$, perturbative component

$$\times \underbrace{H_f(x,\xi,t)}$$

a particular GPD(x, ξ, t), non-perturbative function

In observables, GPDs will appear hidden inside CFFs

The need to go beyond DVCS

 LO amplitude for DVCS restricts the access to GPDs to the line x = ξ:

$$\mathrm{CFF}_{\mathrm{DVCS}} \sim \mathrm{PV}\left(\int_{-1}^{1} dx \frac{1}{x-\xi} \mathrm{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \ i\pi\delta(x-\xi) \mathrm{GPD}(x,\xi,t) + \cdots$$

• Let us take a look at other processes that may solve this problem

Timelike Compton scattering (TCS)

• "Mirror" image of DVCS:

Feynman diagram for TCS

• GPDs enter the LO amplitude of TCS via the CFFs:

$$\text{CFF}_{\text{TCS}} \sim \text{PV}\left(\int_{-1}^{1} dx \, \frac{1}{x+\xi} \text{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \, i\pi \delta(x+\xi) \text{GPD}(x,\xi,t) + \cdots$$

• 1st measurement of TCS by the CLAS collaboration at JLab: P. Chatagnon et al., PRL 127, 262501 (2021)

Double deeply virtual Compton scattering (DDVCS)

 An extra virtuality with respect to DVCS and TCS to escape the x = ±ξ lines:

DDVCS (left), BH diagrams (middle and right). Crossed diagrams are not shown

• GPDs enter the DDVCS amplitude at LO via CFFs:

$$\mathrm{CFF}_{\mathrm{DDVCS}} \sim \mathrm{PV}\left(\int_{-1}^{1} dx \frac{1}{x-\rho} \mathrm{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \ i\pi \delta(x-\rho) \mathrm{GPD}(x,\xi,t) + \cdots$$

$$\rho = -\frac{\bar{q}^2}{2\bar{p}\bar{q}}, \quad \xi = \frac{-\bar{q}\Delta}{2\bar{p}\bar{q}}$$

Original papers in DDVCS: Belitsky & Muller, PRL 90, 022001 (2003); Guidal & Vanderhaeghen, PRL 90, 012001 (2003); Belitsky & Muller, PRD 68, 116005 (2003)

V. Martínez-Fernández

DDVCS subprocess

• DDVCS subprocess amplitude:

$$i\mathcal{M}_{\rm DDVCS} = \frac{ie^{4}\bar{u}(\ell_{-},s_{\ell})\gamma_{\mu}v(\ell_{+},s_{\ell})\bar{u}(k',s)\gamma_{\nu}u(k,s)}{(q^{2}+i0)(q'^{2}+i0)}T_{s_{2}s_{1}}^{\mu\nu}$$

• Compton tensor decomposition at LT:

$$T^{\mu\nu}_{s_2s_1} = T^{(V)\mu\nu}\bar{u}(\rho',s_2) \Big[(\mathcal{H}+\mathcal{E})\not h - \frac{\mathcal{E}}{M}\bar{p}^+ \Big] u(\rho,s_1) + T^{(A)\mu\nu}\bar{u}(\rho',s_2) \Big[\widetilde{\mathcal{H}}\not h + \frac{\widetilde{\mathcal{E}}}{2M}\Delta^+ \Big] \gamma^5 u(\rho,s_1)$$

$$T^{(V)\mu\nu} = -\frac{1}{2} (g^{\mu\nu} - n^{\mu} n^{\star\nu} - n^{\nu} n^{\star\mu}) \equiv -\frac{1}{2} g^{\mu\nu}_{\perp}$$
$$T^{(A)\mu\nu} = -\frac{i}{2} \epsilon^{\mu\nu}{}_{\rho\sigma} n^{\rho} n^{\star\sigma} \equiv -\frac{i}{2} \epsilon^{\mu\nu}_{\perp}$$

• Longitudinal plane is built with
$$\{\bar{q}, \bar{p}\}$$

• $q_{\perp}^{\nu} \sim \Delta_{\perp}^{\nu} \Rightarrow g_{\perp}^{\mu\nu} q_{\nu} \neq 0 \Rightarrow \text{EM gauge-violation}$

DDVCS subprocess

- Longitudinal plane is built with $\{ar{q},ar{p}\}$
- $q_{\perp}^{\nu} \sim \Delta_{\perp}^{\nu} \Rightarrow g_{\perp}^{\mu\nu} q_{\nu} \neq 0 \Rightarrow$ EM gauge-violation
- Gauge-violation can be cured by evaluating the hard part of the process at t = t₀ (|t₀| ≤ |t|):

$$q_{\perp}^{\nu}|_{t=t_0} \sim \Delta_{\perp}^{\nu}|_{t=t_0} = 0$$

• This procedure is consistent with the collinear factorization which is at the core of the GPD description

Kleiss-Stirling (KS) techniques

- Avoid computation of traces of gamma-matrices
- Address amplitude first instead of its modulus squared
- Reduce amplitudes to complex-numbers
- 2 scalars as building blocks, *a* and *b* as light-like vectors:

$$s(a, b) = \bar{u}(a, +)u(b, -) = -s(b, a)$$
$$t(a, b) = \bar{u}(a, -)u(b, +) = [s(b, a)]^*$$
$$s(a, b) = (a^2 + ia^3)\sqrt{\frac{b^0 - b^1}{a^0 - a^1}} - (a \leftrightarrow b)$$

Kleiss & Stirling, Nucl. Phys. B 262 (1985) 235-262

DDVCS subprocess à la KS

• DDVCS subprocess amplitude:

$$i\mathcal{M}_{\rm DDVCS} = \frac{-ie^4}{(Q^2 - i0)(Q'^2 + i0)} \left(i\mathcal{M}_{\rm DDVCS}^{(V)} + i\mathcal{M}_{\rm DDVCS}^{(A)} \right)$$

• Vector contribution:

$$\begin{split} i\mathcal{M}_{\rm DDVCS}^{(V)} = & -\frac{1}{2} \Big[f(s_{\ell}, \ell_{-}, \ell_{+}; s, k', k) - g(s_{\ell}, \ell_{-}, n^{\star}, \ell_{+}) g(s, k', n, k) - g(s_{\ell}, \ell_{-}, n, \ell_{+}) g(s, k', n^{\star}, k) \Big] \\ & \times \Big[(\mathcal{H} + \mathcal{E}) [Y_{s_{2}s_{1}}g(+, r_{s_{2}}', n, r_{s_{1}}) + Z_{s_{2}s_{1}}g(-, r_{-s_{2}}', n, r_{-s_{1}})] - \frac{\mathcal{E}}{M} \mathcal{J}_{s_{2}s_{1}}^{(2)} \Big] \end{split}$$

• Axial contribution:

$$i\mathcal{M}_{\rm DDVCS}^{(\mathcal{A})} = \frac{-i}{2} \epsilon_{\perp}^{\mu\nu} j_{\mu} (s_{\ell}, \ell_{-}, \ell_{+}) j_{\nu} (s, k', k) \left[\widetilde{\mathcal{H}} \mathcal{J}_{s_{2}s_{1}}^{(1,5)+} + \widetilde{\mathcal{E}} \frac{\Delta^{+}}{2M} \mathcal{J}_{s_{2}s_{1}}^{(2,5)+} \right]$$

More details in:

K. Deja, V. Martínez-Fernández, B. Pire, P. Sznajder, J. Wagner, PRD 107 (2023), no. 9, 094035

DVCS & TCS limits of DDVCS

Comparison of DDVCS and (left) DVCS and (right) TCS cross-sections for pure VCS subprocess. GK model for GPDs.

Trento: PRD 70, 117504 (2004); BDP: EPJC23, 675 (2002)

ARTONS

Observables in DDVCS: beam-spin asymmetry

• Single beam-spin asymmetry for longitudinally polarized electrons:

$$\begin{aligned} A_{LU}(\phi_{\ell,\text{BDP}}) &= \frac{\Delta \sigma_{LU}(\phi_{\ell,\text{BDP}})}{\sigma_{UU}(\phi_{\ell,\text{BDP}})} \\ \Delta \sigma_{LU}(\phi_{\ell,\text{BDP}}) &= \int_{0}^{2\pi} d\phi \int_{\pi/4}^{3\pi/4} d\theta_{\ell,\text{BDP}} \sin \theta_{\ell,\text{BDP}} \\ \times \left(\frac{d^{7}\sigma^{\rightarrow}}{dx_{B}dQ^{2}dQ'^{2}d|t|d\phi d\Omega_{\ell,\text{BDP}}} - \frac{d^{7}\sigma^{\leftarrow}}{dx_{B}dQ^{2}dQ'^{2}d|t|d\phi d\Omega_{\ell,\text{BDP}}} \right) \end{aligned}$$

- We consider $Q'^2 > Q^2$: our DDVCS is "more" timelike than spacelike
- Variable for later use:

$$y = \frac{pq}{pk} \underbrace{=}_{\substack{\text{proton}\\ \text{rest}\\\text{frame}}} \frac{E - E'}{E} ,$$

E=energy of incoming electron beam, E'=energy of recoiled electron

Observables in DDVCS: beam-spin asymmetry

V. Martínez-Fernández

PhD seminar series - NCBJ, Poland

Monte Carlo study: distribution in y (DDVCS)

JLab12, JLab20+

EIC 5×41, EIC 10×100

 $10000 \ {\rm events}/{\rm distribution}.$ Neither acceptance nor detectors response are taken into account in this study

Experiment	Beam energies	Range of t	$\sigma _{0 < y < 1}$	$\mathcal{L}^{10k} _{0 < y < 1}$	y_{\min}	$\sigma _{y_{\min} < y < 1}/\sigma _{0 < y < 1}$
	[GeV]	$[GeV^2]$	[pb]	[fb ⁻¹]		
JLab12	$E_e = 10.6, E_p = M$	(0.1, 0.8)	0.14	70	0.1	1
JLab20+	$E_e = 22, E_p = M$	(0.1, 0.8)	0.46	22	0.1	1
EIC	$E_e = 5, E_p = 41$	(0.05, 1)	3.9	2.6	0.05	0.73
EIC	$E_e = 10, E_p = 100$	(0.05, 1)	4.7	2.1	0.05	0.32

Kinematic cuts: $Q^2 \in (0.15, 5) \text{ GeV}^2$ $Q'^2 \in (2.25, 9) \text{ GeV}^2$ JLab: $-t \in (0.1, 0.3) \text{ GeV}^2$ EIC: $-t \in (0.01, 1) \text{ GeV}^2$ $\phi, \phi_{\ell} \in (\pi, 4, 3\pi/4) \text{ rad}$ JLab: $y \in (0.1, 1)$ EIC: $y \in (0.05, 1)$

ତ୍ରିତାଠ

Worldwide picture

Image courtesy of Paweł Sznajder

Worldwide picture

More info about JLab20+: A. Accardi et al., arXiV: nucl-ex/2306.09360

Worldwide picture

More info about EIC: R. Abdul Khalek et al., Nucl. Phys. A 1026 (2022) 122447 (Yellow Report)

Summary

- DIS and PDF have been explained and related
- GPDs as a 3D version of the PDFs have been introduced via exclusive inelastic scattering
- I have shown how DDVCS allows to map GPDs on their whole domain, i.e., $x \neq \xi$. Full knowledge of GPDs is fundamental in order to:
 - Understand the different sources for the spin of the hadron
 - Perform transverse imagining (tomography)
- The latest results in both the theoretical and phenomenological aspects of DDVCS have been discussed
- New experiments are ahead: EIC (and maybe JLab20+?)

Thank you!

Complementary slides

Light-cone coordinates

• A way to parameterize 4-vectors:

$$z^{\mu} = z^{-} n^{\mu} + z^{+} n'^{\mu} + z^{\mu}_{\perp},$$

 $n^{2} = n'^{2} = 0, \quad nn' \neq 0,$
 $z_{\perp} n = z_{\perp} n' = 0$

• *n*, *n*' define the "minus" and "plus" longitudinal directions, respectively

Wilson line

• It restores the gauge invariance of the PDF,

$$\mathcal{W}[z_1^-, z_2^-] = \mathbb{P} \exp\left[ig \int_{z_2^-}^{z_1^-} da^- A^+(a^-)\right]$$

• It is the result of resumming contributions to leading twist $(\mathcal{O}(\text{constant}/Q^2) \text{ neglected})$ from gluon exchanges between the hard part (parton-photon interaction) and the soft part (non-active partons):

Diagram for a Wilson line

 $\bullet\,$ Under the gauge ${\it A}^+=$ 0, ${\cal W}\equiv 1$ and can be disregarded

DVCS amplitude

• Photon-proton interaction, to order[†] $\mathcal{O}(\alpha_{em})$:

$$\begin{split} \langle \gamma(q') \mathcal{N}(p') | \mathcal{S}^{(2)} | \gamma^*(q) \mathcal{N}(p) \rangle &= \frac{3}{4} (2\pi)^4 \delta(p + q - p' - q') (\varepsilon_{q\lambda})_\alpha (\varepsilon^*_{q'\lambda'})_\beta \\ &\times \sum_f e_f^2 \int d^4 \ell \frac{d^4 z}{(2\pi)^4} e^{i\ell z} \operatorname{tr} \left\{ \left[\gamma^\beta \frac{i(\ell + q)}{(\ell + q)^2 + i0} \gamma^\alpha + \gamma^\alpha \frac{i(\ell - q')}{(\ell - q')^2 + i0} \gamma^\beta \right] \gamma^\mu \right\} \\ &\times \langle \mathcal{N}(p') |: \bar{\mathfrak{q}}_f(0) \gamma_\mu \mathfrak{q}_f(z) : | \mathcal{N}(p) \rangle \\ &+ \text{(axial term)} \end{split}$$

- ℓ is the 4-momentum of the active parton
- $\varepsilon_{q\lambda}$ is the polarization vector of the photon with momentum q and polarization λ

$${}^{\dagger} e_f^2 = e^2 Q_f^2$$
 , Q_f = quark's fraction of proton electric charge

DVCS amplitude

- Momentum can be parameterized with the following variables:
 - x, the fraction of the hadron longitudinal momentum that is carried away by the parton

2
$$\xi = -\frac{\Delta \bar{q}}{2\bar{p}\bar{q}}$$
, called skewness
 $(\bar{p} = (p+p')/2, \ \Delta = p'-p, \ \bar{q} = (q+q')/2)$

• This way, for instance, $(\ell - q')^{\mu} = (x - \xi)\overline{p}^{+} n'^{\mu} + \left(\ell^{-} - \frac{Q^{2}}{4\xi\overline{p}^{+}}\right)n^{\mu} + \ell_{\perp} + \Delta_{\perp}$ $(\ell - q')^{2} = -(x - \xi)\frac{Q^{2}}{2\xi} + \underbrace{\mathcal{O}\left(\frac{\ell_{\perp}^{2}}{Q^{2}}, \frac{\Delta_{\perp}^{2}}{Q^{2}}, \frac{\ell_{\perp}\Delta_{\perp}}{Q^{2}}, \frac{\ell^{-}\overline{p}^{+}}{Q^{2}}\right)}_{Q^{2}}$

Neglecting transverse dynamics renders collinear factorization

• Collinear factorization is justified on Q^2 being the scale of the process and, therefore, larger than any other momentum

GPDs of a spin-1/2 hadron

• Further decomposition of the correlator that has been called the GPD so far $(t = \Delta^2)$:

- Technically, the GPDs are H_f and E_f , although F_f is usually referred to as the GPD too. As usual, it is a matter of context...
- The axial term give rise similarly to another two GPDs: \widehat{H}_f and \widetilde{E}_f

Kleiss-Stirling (KS) techniques

Define a massless spinor basis {u(κ₀, ±)} for momentum κ₀² = 0 and helicity ±. The negative-helicity state is defined by:

$$ar{u}(\kappa_0,-)u(\kappa_0,-)=\omega_-\kappa_0,\quad \omega_\lambda=rac{1}{2}(1+\lambda\gamma^5)$$

• Define a spacelike vector $\kappa_1^2 = -1$ such that $\kappa_0 \kappa_1 = 0$, then the positive-helicity state is:

$$u(\kappa_0,+)=\kappa_1 u(\kappa_0,-)$$

Kleiss & Stirling, Nucl. Phys. B 262 (1985) 235-262

Kleiss-Stirling (KS) techniques

• For any spinor associated to a massless fermion of momentum *p*, imposing Dirac equation, projection

$$u(\boldsymbol{\rho},\lambda)\overline{u}(\boldsymbol{\rho},\lambda)=\omega_{\lambda}\boldsymbol{p},\quad\lambda=\pm\,,$$

and using spinor basis above, one finds:

$$u(p,\lambda) = rac{p u(\kappa_0,-\lambda)}{\sqrt{2p\kappa_0}}$$

- The only restriction to this formula is $p\kappa_0 \neq 0$ and, for computer purposes, not extremely small
- Massive spinors can be expanded by means of the massless ones described here

Kleiss & Stirling, Nucl. Phys. B 262 (1985) 235-262

DDVCS subprocess à la KS

• *f* = contraction of 2 currents

 $f(\lambda,k_0,k_1;\lambda',k_2,k_3) = \overline{u}(k_0,\lambda)\gamma^{\mu}u(k_1,\lambda)\overline{u}(k_2,\lambda')\gamma_{\mu}u(k_3,\lambda') = 2[s(k_2,k_1)t(k_0,k_3)\delta_{\lambda-}\delta_{\lambda'+} + t(k_2,k_1)s(k_0,k_3)\delta_{\lambda+}\delta_{\lambda'-} + s(k_2,k_0)t(k_1,k_3)\delta_{\lambda+}\delta_{\lambda'+} + t(k_2,k_0)s(k_1,k_3)\delta_{\lambda-}\delta_{\lambda'-}]$

• g = contraction of a current with a lightlike vector a

$$g(s,\ell,a,k) = \bar{u}(\ell,s) \neq u(k,s) = \delta_{s+s}(\ell,a)t(a,k) + \delta_{s-t}(\ell,a)s(a,k)$$

• BH diagrams can be treated in a similar manner

More details in:

K. Deja, V. Martínez-Fernández, B. Pire, P. Sznajder, J. Wagner, PRD 107 (2023), no. 9, 094035

DVCS limit of DDVCS

• DDVCS to DVCS:

DDVCS (left), DVCS (right)

TCS limit of DDVCS

Models for the C-even part of GPD H^q

Distributions of $\sum_{q} e_q^2 H^{q(+)}(x,\xi,t)$ at $t = -0.1 \text{ GeV}^2$, where q = u, d, s flavors for (left) $\xi = x$, (middle) $\xi = 0.1$ and (right) $\xi = 0.5$. The solid black, dashed red and dotted green curves describe the GK, VGG and MMS GPD models, respectively. The C-even part of a given vector GPD is defined as: $H^{q(+)}(x,\xi,t) = H^q(x,\xi,t) - H^q(-x,\xi,t)$. The scale is chosen as $\mu_E^2 = 4 \text{ GeV}^2$.