Measurements of 10 ps lifetime of 10+ state in 128Cs – experiment and analysis

Adam Nałęcz-Jawecki

Table of Contents

- Short reminder from last year presentation:
 - Chirality (¹²⁸Cs)
 - Lifetime measurement (RDDS)
 - Experiment details (detectors, energies)
- Analysis:
 - Energy calibration
 - Diffusion in target
 - Velocity distribution
- Future

Chirality – 2 states identical, but different

Nuclear chirality – time reflection

¹²⁸Cs – chiral nuclei

Adopted Levels, Gammas

Recoil Distance Doppler Shift – lifetime measurement

- Flight time $t = \frac{d}{v}$
- Probability of de-excitation during flight $e^{\frac{-t}{r}}$
- Minimal distance 15 um
- v=0.006c=1.8*10⁶m/s
- Minimal time 8 ps

Experiment setup

- Heavy Ion Laboratory, Warsaw
- 13 days of beam
- 6*10⁹ particles per second
- Crossection 350 mbar, probability ~5*10⁻⁷
- 3000 ¹²⁸Cs produced per second
- Eagle 14 detectors 10-20 cm from target, 2 cm diameter
- ~0.06% chance photon collected by single detector
- 1.8 single detection per second

Resolution vs Doppler shift

Calibration

- Detector is a crystal
- We measure voltage
- Voltage is proportional to energy deployed
- Voltage depends also on temperature, beam intensity etc.
- Calibration is linear function from voltage to photons energy
- Calibration changes at ~1% with time

RM

Tota

Area

RO

16k

Precalibration by ¹⁵²Eu Track 7 det not found

- ¹⁵²Eu solid source
- Emits over 10 well known energies

FWHM

Centr

Easy calibration

Calibration on 2 peaks

13

60000			
	279.01 keV	•	Divide data into 2h runs
50000 -		•	Choose 2 highest peaks of known energies
40000 -		547.5 keV	Linear function channel -> energy
30000 -		•	Fit each run separately
		•	Good enough?
20000 -			_
10000 -	Multiment marken helde	Mullime	-hamiles a material
0	<u>ا ا ا</u> 1000 2000	3000 40	000 5000 6000 7000 8000 900

Calibration on 2 peaks

Enough calibration?

- Flight and stop peaks
- Normally separated, now not
- Can't see 2 peaks, must fit

Enough calibration?

- 50 eV difference
- Similar fit, BUT

- 50 eV difference
- Similar fit, BUT flight and stop parts very different!

Final calibration

- Much longer procedure
- Peak stay within ±5-10 eV limit
- Theoretical (statistical) limit 2-3 eV
- Should be enough

Unexpected problem

- Higher energy, more separated
- Known lifetime <1 ps
- 600 um distance, 330 ps flight
- Why there is stop (unshifted) part?

Target details

- 0.5 um tin (Sn)
- Too thin needs a support
- 2.5 um gold
- Gold is heavy no reaction
- Beam first hit gold, then tin
- Reaction in tin, product Cs leaves target
- Stops after some time

Diffusion

Unexpected problem

- Higher energy, more separated
- Known lifetime <1 ps
- 600 um distance, 330 ps flight
- Why there is stop (unshifted) part?
 Diffusion!

Velocity distribution

- Thin target velocities 0.007(2)c
- Thick target velocities at all the range from 0 to maximum
- Diffused target unknown velocity distribution

Flight peak shape

- Flight time t= $\frac{d}{v}$
- Probability of de-excitation during flight $e^{\frac{-t}{r}}$
- Lower v higher de-excitation probability
- Lower v lower Doppler shift
- Higher energies less probable for short distance

Velocity distribution – reverse engineering

- Assume different velocity distributions
- Simulate peak shaper
- Compare to data
- Fit best by least squares
- χ²=9.5, should be 5±3 (5 dof)
- Still working on it

Best results for today

- 12+ lifetime 5±4 ps
- 11+ lifetime <4 ps
- 10+ lifetime 12±6 ps
- Might change, but <20 ps
- 10+ non-chiral!

Future

- PAC commission at HIL in mid January 2024
- Decide now, then 3 or more months of preparation
- 2 ideas for next experiment:
 - ¹²⁸Cs again, different reaction, higher velocities
 - ¹²⁶Cs similar reaction, different isotope, less examined

¹²⁸Cs experiment on Palladium

- ¹¹⁰Pd(²²Ne,p3n)¹²⁸Cs
- Beam nuclei over 2x heavier
- Beam energy over 1.5x larger
- Recoil velocities over 3x larger
- So 11⁺ and 12⁺ states lifetimes measured much more precisely
- BUT proton emission 5-10x less statistics
- Solution: DIAMANT proton detector soon istalled

¹²⁶Cs experiment

- ¹²⁰Sn(¹⁰B,4n)¹²⁶Cs
- Another chiral nuclei
- Not known the lifetime of 9⁺ state we could measure
- Similar energies, but lifetimes could be much different
- BUT how to prevent tin from diffusing?

Decision before PAC!

