Establishment of best practices in reducing uncertainty of neutron cross-sections with Bayesian methods

NARODOWE CENTRUM JĄDROWYCH ŚWIERK

Presentation plan

- sections
- What is the point of knowing neutron cross-sections accurately? •
- Data assimilation
- Bayesian statistics algorithms
- Good practices in Bayesian statistics
- Summary

Accuracy limits of direct experimental measurements of neutron cross-

Michał Jędrzejczyk

It is a measure of probability for a reaction between neutron and nucleus. Unit: 1 barn = 10^{-24} cm²

Some of reaction types:

n, gamma

Graphics based on L. Hamidatou, H. Slamene et al. Concepts, Instrumentation and Techniques of Neutron Activation Analysis, DOI: 10.5772/53686

What is a neutron cross section?

Some of other reaction types:

3/28

- n, 2n
- n, alfa ullet

Michał Jędrzejczyk

		1E+0
Fission measurement accuracy: ~0.8 %		1E+0
Neutron capture measurement accuracy:		1E+0
measured by capture/fission ratio, so >0.8 %	, b	1E+0
Elastic scattering measurement accuracy	ss section	1E+0
limited by energy resolution limits		1E-0
		1E-0
		1E-0
		1E-0-

Continuous neutron cross section library

Michał Jędrzejczyk

u-235-mt=102 n,gamma to u-235-mt=102 n,gamma - Covariance matrix

Covariance matrix example

Michał Jędrzejczyk

 $k_{eff} = \frac{number \ of \ neutrons \ in \ one \ generation}{number \ of \ neutrons \ in \ preceding \ generation}$

- For $k_{eff} = 1$ a reactor is critical (constant power).
- For $k_{eff} > 1$ the reactor's power increases.
- When $k_{eff} > 1.0065$ in a typical thermal reactor, the power increases exponentially.
- Safety margin for thermal reactor: $k_{eff} < 1.0032$

Reactor geometry optimisation and safety requirements based on k_{eff} .

Multiplication factor – a chain reaction parameter dependent on cross section values

Michał Jędrzejczyk

- Geometry and material composition is defined in ulletdedicated software
- Neutron behaviour is simulated with Monte \bullet **Carlo simulator**
- keff is calculated from formula presented earlier ullet
- Enough generations are run for the statistical ulletuncertainty of keff to be very small (typically ~0,0001**≈0,01%**)

Michał Jędrzejczyk

Inaccuracies in k_{eff} calculations

Cross section uncertainties are the main contributor to the keff uncertianty.

Keff uncertainty can be calculated with an error propagation method:

$$E^2 = SMS^T$$

- E =uncertainty in 1 sd
- S =sensitivity vector
- M = covariance matrix of xs uncertainties

8/28

Another way: Monte Carlo sampling

Usually keff uncertainty ≈ 1-2%

Michał Jędrzejczyk

Problem definition

- k_{eff} unc = f(cross sections unc, geometrical unc, MC unc).
- Reducing neutron cross-section uncertainty with direct measurements is beyond the possibilities of current technology
- k_{eff} can be easily measured experimentally Inverse procedure:

Can we reduce the neutron cross-section uncertainties using k_{eff} measurements?

Posterior k_{eff} for a system of interest

Experiment examples

Highly enriched uranium sphere

A stack of intermediately enriched uranium disks

Bayesian statistics

- Bayes' theorem: $P(\theta|y_0) \propto P(y_0|\theta)P(\theta)$
- $P(\theta)$ prior (initial distribution of θ) $P(\theta|y_0)$ - posterior (distribution of θ given data y_0) $P(y_0|\theta)$ - likelihood (distribution of y_0 as a function of θ)

Successful procedure indications:

- 1. Uncertainty got reduced
- 2. Mean posterior got closer to its true value

Bayesian calibration algorithms

Method	GLLS	MOCABA	SMC-ABC
Model type	Linear approximation	Any model	Any model
Prior distribution of input parameter	Multivariate normal	Any distribution that can be transformed to a multivariate normal distribution	Any distribution
Posterior	Multivariate normal	Multivariate normal	Any distribution
Sampling	No sampling	Monte Carlo sampling	Complex algorithm with Markov Chain Monte Carlo within
Computational burden	Seconds once sensitivity analysis is complete	1-2 days	Months

Algorithm performance comparison based on example

Goal: reduction of uncertainty of neutron cross-sections relevant to fast U-235 rich systems

- Top 23 cross-sections influence on a 93 % U-235 system: 80 % k_{eff} uncertainty
- 24 experiments designated for assimilation

Michał Jędrzejczyk

Cross-section list

Reaction type or	
quantity and	Energy range [eV]
energy group	
(n, gamma)4	(3.00E+06 - 1.85E+06)
(n, gamma)6	(1.50E+06 - 1.20E+06)
(n, gamma)7	(1.20E+06 - 8.61E+05)
(n, gamma)9	(7.50E+05 - 6.00E+05)
(n, gamma)10	(6.00E+05 - 4.70E+05)
(n, gamma)11	(4.70E+05 - 3.30E+05)
(n, gamma)12	(3.30E+05 - 2.70E+05)
(n, gamma)13	(2.70E+05 - 2.00E+05)
(n, gamma)14	(2.00E+05 - 5.00E+04)

Table 1: Calibrated perturbation factor list

n, gamma)15	(5.00E+04 - 2.00E+04)
n, gamma)17	(1.70E+04 - 3.74E+03)
(n, n')4	(1.85E+06 - 1.50E+06)
(n, n')7	(1.20E+06 - 8.61E+05)
(n, n')9	(7.50E+05 - 6.00E+05)
(n, n')10	(6.00E+05 - 4.70E+05)
(n, n')11	(4.70E+05 - 3.30E+05)
(n, elastic)14	(2.00E+05 - 5.00E+04)
(n, fission)2	(6.43E+06 - 4.30E+06)
(n, fission)4	(3.00E+06 - 1.85E+06)
(n, fission)7	(1.20E+06 - 8.61E+05)
(n, fission)11	(4.70E+05 - 3.30E+05)
(n, fission)14	(2.00E+05 - 5.00E+04)
(chi)1	(2.00E+07 - 6.43E+06)

Experimental database

International Handbook of Evaluated Criticality Safety Benchmark Experiments

EVALUATED EXPERIMENTS

Highly Enriched Uranium Systems

METAL SYSTEMS

FAST METAL SYSTEMS

HEU-MET-FAST-001	Bare, Highly Enriched Uranium Sphere (Godiva)
HEU-MET-FAST-002	Topsy 8-Inch-Tuballoy-Reflected Oralloy Assemblies
HEU-MET-FAST-003	Reflected Oralloy Spherical Assemblies
HEU-MET-FAST-004	Water-Reflected, Highly Enriched Uranium Sphere
HEU-MET-FAST-005	Beryllium- and Molybdenum-Reflected Cylinders of Highly Enriched Uranium
HEU-MET-FAST-006	Lattices of Oralloy Cubes in Water
HEU-MET-FAST-007	Uranium Metal Slabs Moderated with Polyethylene, Plexiglas, and Teflon
HEU-MET-FAST-008	Bare Sphere of Highly Enriched Uranium
HEU-MET-FAST-009	Spheres of Highly Enriched Uranium Reflected by Beryllium or Beryllium Oxide
HEU-MET-FAST-010	Spheres of Highly Enriched Uranium Reflected by Boron+Beryllium or Boron+Beryllium Oxide
HEU-MET-FAST-011	Sphere of Highly Enriched Uranium Reflected by Polyethylene

Data assimilation results – posterior means

Cross-section number

Michał Jędrzejczyk

Data assimilation results – posterior uncertainties

Most appropriate algorithm - MOCABA

Michał Jędrzejczyk

Validation techniques

- simulated data
- 2. The use of so-called synthetic experiments

Two techniques are available to determine whether the data assimilation was successful

1. Validation using unassimilated experiments – checking if experimental data is close to

Michał Jędrzejczyk

Validation 1 & Uncertainty reduction in calculated k_{eff}

NARODOWE BADAŃ JĄDROWYCH WIERK

Distance between the mean calculated and experimental results reduced by 49 %

Posterior k_{eff} uncertainty reduced by 48 %

Michał Jędrzejczyk

Validation 2: synthetic experiments

Synthetic experiments are simulation outputs generated computationally, based on inputs sampled from the prior. We assimilate the outputs and check how close posterior values are to the sample from the prior.

Synthetic experiment validation results

15 neutron cross-sections were calibrated successfully, 8 either stayed unchanged or were slightly overfitted.

Michał Jędrzejczyk

Identifiability assessment

Identifiability problem answers the question on whether available measurement data is enough to find the true value of uncertain input parameters.

When is identifiability weak?

ullet

input parameter is dominant sensitivity-wise

- When measurements are not diverse enough •
- When there are too few measurements

In cases where output parameters are not sensitive to some input parameters or one

Influence of unupdated cross-sections on results

assimilation

- Uncalibrated parameters' uncertainties are often ignored
- ignored

Current treatment of uncalibrated parameters in nuclear engineering data

• The correlations between experimental errors from uncalibrated parameters are

Michał Jędrzejczyk

Experimental vs unupdated cross-section correlated uncertainties

Experimental uncertainty covariance matrix:

- Experimental sources: geometry or material of some part of the experimental setup is the same across multiple experiments. Example: container dimensions
- Other source: uncertainty from unupdated cross-sections, which are present across Example: multiple experiments. sections O and H if only U is considered

cross-

Photo of the vessel in which 10 critical solutions were researched

Michał Jędrzejczyk

Example problem for unupdated cross-section treatment

thermal systems

Goal: reduction of uncertainty of neutron cross-sections relevant for

Consequences of neglecting covariances from unupdated cross-sections

Posterior keff results after executing the algorithm from previous slide

Another finding: difficult to correctly update fastest neutron cross-sections

Synthetic validation result: the fastest groups overfitted. Additional experiments, other than k_{eff} measurements required.

Comparison of U-235(chi) parameter posterior with synthetic values.

Summary

- The most appropriate algorithm for neutron cross-section Bayesian updating was found MOCABA
- A novel in the context of nuclear engineering validation procedure was presented the synthetic experiments
- The correct treatment of uncalibrated uncertain cross-sections was proposed
- It is found that for all cross-section to be successfully calibrated additional experiments, other than k_{eff} measurements are required

Thank you for your attention

www.ncbj.gov.pl

