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Outline:

1) Introduction about Mixmaster Universe + Motivation

2) Mathematical background.

3) Investigation on the dynamics of the system. Comological interpretation.
4) Analysis of the (possible?) inflationary-expansion behaviour.

5) Conclusions and prospects for the future.



Introduction: Mixmaster Universe

« Homogeneous model of Early Universe.
Studied by Belinski, Khalatnikov and Lifshitz (BKL) and independently by Misner.

« Oscillatory and Chaotic behaviour close to the initial singularity (Big Bang).

« Random and repeated squeezing and blowing up of spatial directions.
3D Mixing— Anisotropy.

[1] D. Garfinkle. Of singularities and breadmaking. (2007)
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Motivation: Why Anisotropy?

« Anisotropic very early universe — Expansion flattens the effect — Isotropy

« More generic model, we need less primordial symmetries.

« Isotropic bouncing models — OK, but slightly blue-tilted spectrum. Can anisotropy improve that?

L But CMB says:
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Planck P.(k) = As (_) T A el S R R ST
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. Multipole moment ¢
Spectral index

ne = 0.9639 4= 0.0047 almost scale invariant —p (S“ghtly red-tilted ns<1
For large scales (infrarred))

Power spectrum: Measures deviation from homogeneity

Correlation function: 3
d’k ik-(x—x'
£(r) = 6(05(x) = 7 [ d*x 8030 ), e = [ o PR )




Motivation: Why Anisotropy?

Anisotropic very early universe — Expansion flattens the effect — Isotropy
More generic model, we need less primordial symmetries.
Isotropic bouncing models — OK, but slightly blue-tilted spectrum. Can anisotropy improve that?

Can anisotropy account for the origin of “depart from explanation” of primordial universe behaviour?
Some observational data [2] suggest anomalies at large scales.

[2] A Durakovica, et al. (2018) Reconstruction of a direction-dependent
primordial power spectrum from Planck CMB data, JCAP 1802



Quantum Primordial Universe

« End goal: Full description of primordial Universe — Quantum description

« Quantization: Replace singularity by quantum bounce.

« Interplay between isotropic and anisotropic variables — Complex quantum dynamics.

Mathematical description: Hamiltonian formulation

- Bianchi IX metric:
. Spatial hypersurface:
ds® = —N2d7'2 - E a? (w?’)Q S’topology, Closed universe
Lapse function . .
with: & - w’ = 9§

a.(t): 3 different principal direction » Killing vector: SO(3,R)
scale factors (anisotropy) isometry group generator



Mathematical description: Hamiltonian formulation

S R e i Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) IR
. KY = _(QV(ZNJ) _ 7@])

1¢ \2/\/

Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~id)

1
Hamiltonian constraint: H = N/~ ((—(S)R + ’7_1(7T¢j7TZ‘7 — §7T2)>

[

w' = const.



Mathematical description: Hamiltonian formulation

S R e i Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) o L
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Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~ii)

1
Hamiltonian constraint: H = N/~ ((—(S)R + ’7_1(7T¢j7TZ‘7 — —7T2)>
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Canonical transformation q = e%Q, D= Ze—gam
for isotropic variables: = 3
(g > 0 always)



Mathematical description: Hamiltonian formulation

o 12 22 i — Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) e
z- # K = N(2V(ZNJ) ~id)

Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~7)

Hamiltonian constraint: H = N/~ ((—(S)R + v g m — —7'('2))

Using Misner Variables: Q=-lnaaas, == B = —— ln —

+ Conjugate momenums: 1 4 »

L1 B « sotropic geometry Anisotropic variables

aip1 6 12 12 Pq Sy

azp2 | = % L v o

aepa 6 _% 0 P- . . ) 3 2 3
Canonical transformation q= e29 p=rze —3%,
for isotropic variables: 3

(g >0 always)
Hamiltonian Constraint in Misner variables:

9
C=—7 2 3605 +

p+ , Particle in 3D Minkowski s-t.
q =+ 36q 3 V(B ) with time dependent potential

46+
Where: V(8) =

[(2 cosh(2v/38_) — e—ﬁﬁ+)2 - 4} +1



Mathematical description: Hamiltonian formulation

S R i i Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) R
K'L] — W(QV(’NJ) _ ’)’”)

W =

Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~id)

Hamiltonian constraint: H = N/~ ((—(S)R + v g m — —72))
: : : . o1 oo Loagaee 0 1w
Using Misner Variables: \Q/: §ln 410203, \5 “ln—=, (fJ)=—= ln .

6 a / 2V/3

+ Conjugate momenums: 1 _ _ _
Anisotropic variables

|sotropic geometry

VA
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Quantization and semicassical portrait

 |sotropic canonical variables: (¢, p )€ R% xR ——» Positive half-plane /1,

v
Covariant affine group quantization, [3.4] Affine group structure
and semiclassical portrait
using affine coherent states
Bounce
b 4

> p2»(7?2/) (\qa/): Qa(v)g”,
_ Ka(v)Kap1(v)

(quantization/semiclassical K (v) = L . Qa(v) = e O ()
coefficients) 4Ko(v)Ka(v) o(v)K1(v)

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeawu, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Quantization and semicassical portrait

(q,p)ER: xR —» Positive half-plane /14
\

3,4 i
[3:4] Affine group structure

" Isotropic canonical variables:

Covariant affine group quantization,
and semiclassical portrait
using affine coherent states

> e D)

(quantization/semiclassical K (v) =
coefficients) 4Ko(v)K2(v)

Bounce

(@®) = Qul(r)g",

Ka(V)Ka 1(”)
, Qalv) = KO(V)KT(V) '

(B+,p+) € R* —» Full plane

#

Weyl-Heisenberg group:

" Anisotropic variables:

Covariant Weyl-Heisenberg integral quantization

Semiclassical portrait:
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[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeawu, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Quantization and semicassical portrait

- Isotropic canonical variables: (¢, p )€ R% xR » Positive half-plane Q
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[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Semiclassical portrait of full Hamiltonian constraint

“_9( 4 K@ Px ¥ o7 2 o R
C—g<p +T> - Q)5 — 36Q:(eVB) 1] - 55
6 tizati
§:V, 0k, W e P e iclassical
Hamilton equations: parameters
. _ 9
q_ 2p7
8
. 9K +_i 1 2 s
p= §q——2Q 278 +24Q2q 3[V(5)_1]—§RC] 3,

B:l: — _2Q—2% ) \

_ 2~ (we added Radiation)
P+ = 36Q2930:V(B),

* Very rich model:
Let's investigate, numerically, the effects of interplay between anisotropy and quantum bounce.



Solution for Isotropic case: ﬁi =0 = P+

8

4
g 9 ( , K(v)—3 —Q(V)gzi 2 R
Cisotropic = Z p-+ q2 =+ 36@% ( L’)q3 — (]2/3
\ e ,_ 4 8
Let's call for simplicity: [, -— 36Q% Keﬁ.— — W25z
(intrinsic isotropic curvature) (isotropic repulsive strength)
~ T -
v . .
Analytical aproximations for ... e A .
quantum bounce and classical recolapse: / N
' | T A
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Phase-space solutions: > il
(for different R radiation contents) 26 4 =2 u ) 4



Full anisotropic solution:

9 K, - 2 R
C=7 P+ =g) - M5 - Led [V - 1] - =
q q3

Phase space of isotropic variables: Asymmetric bounce of the universe, due to

Wl 10000 |

§
.................

increase of the role of anisotropy energy.
—_Extra boost to the post-bounce expansion

p

\ { ~5000
ﬁ_n'

Chaotic scenario— Very sensitive to initial conditions

(+ we have 6 quantization/semiclassical parameters)

— Ing



A realistic scenario:

| . Anisotroni
Generalised Boni= o B (Ryn)
Friedmann equation: 4
Quantum
1 1 5 1 1 _ 1 . Y Curvature
w3 R)
H? = —pr — =Riso + 6% — ZRani — =Rq %
T 1SS0 ant
(radiation) 6 3 6 6 Q
. 3Q% P 3@%‘7(/8) .9 Q_2p2 - 3Keff
iso = 9 ant — — 12 » 0 = ) - )
2q3 2¢3 48¢4 32¢*



A realistic scenario:
: v Anisotropi
Generalised p, .= + Pg'tse?]tzgﬂgrm ani)
Friedmann equation: 4

1 1 1 . 1 . % Curvature
HQZ—T—— _Ranz’__R ()
(gdiation) 6 30- 6 6 Q :

s _3Q3 o 3@V, Quap® 3Ky

N Qq% ’ Qq%

Quantum

Initially (close to the bounce) we want: RQuantum > ﬁanyj > Pr =>> Riso
p

1000

2nd
> 1% Quantum/Semiclassical Repulsion dominates — Expansion
2"%: Anisotropy plays a significant role — non-trivial Asymmetry
500
' 3rd 3" Transition to radiation, matter dominates dynamics.
15? _— 4" 1 4" Classical recolapse.
——-—3ng¢

But still different initial values
of variables and parameters — P
can reproduce this scenario

Different B+ trajectories _ Different
inside the potential ~ shapes

AR
[aave Y
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Inflationary-expansion behaviour?

The Big Question: Can anisotropy make the phase of accelerated expansion to last long enough?

: : : - ] Increasing # modes leavin
For inflationary scenario: @ > () » H >0 the horiz?)n (Super-Hubeeg)
. . . Power law approximation
Friedmann equation L. 1 - L Eani
L q_ _ H2 = —Damni — _RQ +...>0 where —=Pani = —f of the scale factor
during inflation: 6 6 6 q21Mani  for the anisotropy term

\_\/-/

Driving terms during inflation
(quantum + anisotropy in our model)
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Driving terms during inflation
(quantum + anisotropy in our model)

e-folds AN =In If during inflation n_ is

_AAN / mantained at that value,
de the phase will last for AN e-folds

Unit of time: .
()

QAing

Above conditions translates into: Ttani —

We want:

In the standard inflationary scenario (from observations): AN~ 20 e-folds — ®» Very small n.——®» 1
Pani X —
a
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Driving terms during inflation
(quantum + anisotropy in our model)

e-folds AN =In If during inflation n_ is

_AAN / mantained at that value,
de the phase will last for AN e-folds

Unit of time: .
()

QAing

Above conditions translates into: Ttani —

We want:
In the standard inflationary scenario (from observations): AN~ 20 e-folds — ®» Very small n.——®» 1
Pani X —5
a
1 K Mpi A [V-IN 1R
Our Friedmann equation: H2 = — eff -+ Pt + [ e g e
64 ab 144 ab 44 @2 144 a*
. 2+nnni
Ean = @ ‘

v

Specific situation for the system: < We have to make this potential V to drive the dynamics just
Extremal case for inflationary behaviour after Qauantum domination, to have ~ a ? extended expansion




How to make potential increase?

V(B i) — Very steep triangular walls, with

3 flatter canyons and very flat central part.

| - » Length and flatness of the (closed) canyons in

the vertex modulated by semiclassical parameter @

|
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We throw the particle in the exact direction of the canyons

to make the value of the potential big and ~constant at the same time
for the longest time possible, while momentum becomes small.
Afterwards it will roll down in the opposite direction.
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V(B.) — Very steep triangular walls, with
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(Phase space evolution)
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(Phase space evolution) (Density parameters of Friedmann eq.) (Conformal Hubble evolution)

p Semi — classical geometric quantities H

200 {N
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5
R i P 3 4 s In(q) e-Folds:
N =In(*9)
U 1 g
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Why not enough? H H

o \\
10\ N
(Conformal Hubble evolution) 5 |
100
;
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0.5
-15 -1.0 -05 0.5 1.0 N 15 1.0 05 ' 0.5 1.0 N
Tani
Nans

(nani evolution € (0,4) ) 3 3

v W N

:1_5 A0 o= 05 10 -1.5 -1.0 -0.5 0.5 1.0

Another explanation (from equations of motion of anisotropy variables):

Imposing relative change in the potential to be small during AN e-folds gives: ) _
However in our potential we have:

~~ ~
V4 V Q%Q_2 Vi (Except close to the

=K . —» RHS s very small 2 < = < 8 4igin =0 where the
Vv AN y |V| potential is very flat but small)




Alternatives where there is enough inflation:

Vil _ 2

V|8
Found in previous work: H.Bergeron, E.Czuchry, J.-P.Gazeau, and P. Malkiewicz,
Nonadiabatic bounce and an inflationary phase in the quantum mixmaster universe,
Phys.Rev. D93(2016)124053.

= Same model, harmonic approximation of potential — — »

= Replace anisotropy by standard inflaton with quadratic potential
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Conclusions and Future Investigations:

- Very simple model — Rich dynamics, many possibilities.
- Solve singularity problem — Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.
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- Very simple model — Rich dynamics, many possibilities.
- Solve singularity problem — Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

—»BUT: Might be the seed for future investigations: ¢

(Does not mean we cannot
generate structures)

- Generation of different gravitational potential?
- Interplay with primordial perturbations?

_ Maybe semiclassicality erase some features
> Another approach: Full quantum model — s 1o the bounce. Full quantum is more complicated.

Gravitational potentials g for other previously studied isotropic models:

02

—» Isotropic bouncing models + perturbations give this kind
of gravitational potential —» Generation of cosmological structures.

02-

|  afl—3w)
gl Valm) = [+ 3wty

The primordial spectrum is nearly scale invariant
but slightly blue-tilted for u« >0 — Can anisotropy improve this?

(It can produce an effective cosmological fluid
parameter wani for the equation of state)

0.0;

I NI e TR [5] J. de Cabo Martin, P. Matkiewicz, and P. Peter, (2021) [arXiv:2111.02963]



Thank you for your attention!



