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Outline:

1)  Introduction about Mixmaster Universe + Motivation

2)  Mathematical background.

3)  Investigation on the dynamics of the system. Comological interpretation.

4)  Analysis of the (possible?) inflationary-expansion behaviour.

5)  Conclusions and prospects for the future.



  

Introduction: Mixmaster Universe

● Homogeneous model of Early Universe.
Studied by Belinski, Khalatnikov and Lifshitz (BKL) and independently by Misner.

● Oscillatory and Chaotic behaviour close to the initial singularity (Big Bang).

● Random and repeated squeezing and blowing up of spatial directions.
3D Mixing→  Anisotropy.

[1]

[1] D. Garfinkle. Of singularities and breadmaking. (2007)
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Motivation: Why Anisotropy?

● Anisotropic very early universe → Expansion flattens the effect → Isotropy

● More generic model, we need less primordial symmetries.

● Isotropic bouncing models → OK, but slightly blue-tilted spectrum. Can anisotropy improve that? 

Power spectrum:  Measures deviation from homogeneity

Correlation function:

Spectral index
(slightly red-tilted ns<1

For large scales (infrarred))

Blue tilted means: ns  > 1 

+ 1

+ 1

For large scales (small modes)
But CMB says:



  

● Anisotropic very early universe → Expansion flattens the effect → Isotropy

● More generic model, we need less primordial symmetries.

● Isotropic bouncing models → OK, but slightly blue-tilted spectrum. Can anisotropy improve that? 

● Can anisotropy account for the origin of “depart from explanation” of primordial universe behaviour?
Some observational data [2] suggest anomalies at large scales.

[2] A Durakovica, et al. (2018)  Reconstruction of a direction-dependent 
primordial power spectrum from Planck CMB data, JCAP 1802 

Motivation: Why Anisotropy?



  

Quantum Primordial Universe

● End goal:  Full description of primordial Universe → Quantum description

● Quantization: Replace singularity by quantum bounce.

● Interplay between isotropic and anisotropic variables →   Complex quantum dynamics.

Mathematical description: Hamiltonian formulation  

· Bianchi IX metric:  

} Spatial hypersurface:
S3 topology, Closed universe

with: 

Killing vector:
isometry group generator 

Lapse function

ai (t) : 3 different principal direction
  scale factors (anisotropy)
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3+1 ADM formalism: 

Bianchi IX 3-metric:     + 3-momemtum:Phase space:
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[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102

Quantization and semicassical portrait

· Isotropic canonical variables: 

Affine group structure               :Covariant affine group quantization,
and semiclassical portrait

using affine coherent states

[3,4]

p2 qα

Bounce

(quantization/semiclassical 
coefficients)



  

Quantization and semicassical portrait

· Isotropic canonical variables: 

Affine group structure               :Covariant affine group quantization,
and semiclassical portrait

using affine coherent states

[3,4]

Weyl-Heisenberg group:

· Anisotropic variables: Full plane

Covariant Weyl-Heisenberg integral quantization
 

Semiclassical portrait:

p 2
± ±β

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102

p2 qα

Bounce

(quantization/semiclassical 
coefficients)



  

Quantization and semicassical portrait

Semiclassical portrait:

p 2
± ±β

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



  

Semiclassical portrait of full Hamiltonian constraint

6 quantization
+ semiclassical 

parameters

· Very rich model:
 Let's investigate, numerically, the effects of interplay between anisotropy and quantum bounce.

Hamilton equations:

(we added Radiation)

ξ



  

Solution for Isotropic case:

Let's call for simplicity:

(intrinsic isotropic curvature) (isotropic repulsive strength)

Analytical aproximations for
quantum bounce    and   classical recolapse:

Phase-space solutions:

(for different R radiation contents)

eff



  

Full anisotropic solution:

Phase space of isotropic variables:    Asymmetric bounce of the universe, due to 
   increase of the role of anisotropy energy.
   → Extra boost to the post-bounce expansion

Chaotic scenario→  Very sensitive to initial conditions
(+ we have 6 quantization/semiclassical parameters)

eff



  

A realistic scenario:

Generalised 
Friedmann equation:

Anisotropic 
Potential term

Anisotropic
Kinetic term

(σ2 ) ( Rani )

Quantum
Curvature
( RQ )

(radiation)

ρani =
+



 

1st: Quantum/Semiclassical Repulsion dominates →  Expansion

2nd: Anisotropy plays a significant role → non-trivial Asymmetry

3rd: Transition to radiation, matter dominates dynamics.

4th: Classical recolapse.

But still different initial values
 of variables and parameters 
can reproduce this  scenario

Different β± trajectories
 inside the potential 

Different
shapes=  

A realistic scenario:

Generalised 
Friedmann equation:

Anisotropic 
Potential term

Anisotropic
Kinetic term

(σ2 ) ( Rani )

Quantum
Curvature
( RQ )

(radiation)

ρani =
+



  

Inflationary-expansion behaviour?

The Big Question: Can anisotropy make the phase of accelerated expansion to last long enough?

For inflationary scenario:

Friedmann equation
    during inflation:

Driving terms during inflation 
(quantum + anisotropy in our model)

Power law approximation
of the scale factor 
for the anisotropy term

Increasing # modes leaving
 the horizon (super-Hubble)

where
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    during inflation:

Driving terms during inflation 
(quantum + anisotropy in our model)

Power law approximation
of the scale factor 
for the anisotropy term

Above conditions translates into:

If during inflation nani is 

mantained at that value,  
the phase will last for ΔN e-folds

Increasing # modes leaving
 the horizon (super-Hubble)

where

 In the standard inflationary scenario (from observations): ΔN     20 e-folds~~ Very small nani 
~

We want:

Unit of time:
    e-folds



  

Inflationary-expansion behaviour?

The Big Question: Can anisotropy make the phase of accelerated expansion to last long enough?

For inflationary scenario:

Friedmann equation
    during inflation:

Driving terms during inflation 
(quantum + anisotropy in our model)

Power law approximation
of the scale factor 
for the anisotropy term

Above conditions translates into:

If during inflation nani is 

mantained at that value,  
the phase will last for ΔN e-folds

Increasing # modes leaving
 the horizon (super-Hubble)

Our Friedmann equation:

EANI · a2+nani

We have to make this potential V  to drive the dynamics just
after ΩQuantum domination, to have ~ a- 2 extended expansion

Specific situation for the system:
Extremal case for inflationary behaviour

where

 In the standard inflationary scenario (from observations): ΔN     20 e-folds~~ Very small nani 
~

We want:

Unit of time:
    e-folds



  

How to make potential increase?

V(β±) → Very steep triangular walls, with

 3 flatter canyons and very flat central part. 

Length and flatness of the (closed) canyons in 

the vertex modulated by semiclassical parameter ω±

We throw the particle in the exact direction of the canyons
to make the value of the potential big and ~constant at the same time
for the longest time possible, while momentum becomes small.
Afterwards it will roll down in the opposite direction.
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(Phase space evolution) (Density parameters of Friedmann eq.) (Conformal Hubble evolution)

e-Folds:



  

(Phase space evolution) (Density parameters of Friedmann eq.) (Conformal Hubble evolution)

e-Folds:

Not enough inflation



  

(Conformal Hubble evolution)

(nani  evolution                 )

Why not enough? 

Anisotropic 
potential 

domination

Another explanation (from equations of motion of anisotropy variables):

RHS is very small

 Imposing relative change in the potential to be small during ΔN e-folds gives:
However in our potential we have:

(Except close to the
origin β±=0 where the 
potential is very flat but small) 



  

Alternatives where there is enough inflation: 

Same model, harmonic approximation of potential.

Replace anisotropy by standard inflaton with quadratic potential .

Found in previous work:  H.Bergeron, E.Czuchry, J.-P.Gazeau, and P. Malkiewicz,
Nonadiabatic bounce and an inflationary phase in the quantum mixmaster universe,
Phys.Rev. D93(2016)124053.



  

Conclusions and Future Investigations:

- Very simple model → Rich dynamics, many possibilities. 

- Solve singularity problem → Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

 



  

Conclusions and Future Investigations:

- Very simple model → Rich dynamics, many possibilities. 

- Solve singularity problem → Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

 BUT:  Might be the seed for future investigations:

  · Generation of different gravitational potential? 
    · Interplay with primordial perturbations?

_́́a
a

 Gravitational potentials       for other previously studied isotropic models:

Another approach: Full quantum model →
 Maybe semiclassicality erase some features

close to the bounce. Full quantum is more complicated.

[5] J. de Cabo Martin, P. Małkiewicz, and P. Peter, (2021) [arXiv:2111.02963]

Isotropic bouncing models + perturbations give this kind 
of gravitational potential → Generation of cosmological structures.

The primordial spectrum is nearly scale invariant
but slightly blue-tilted  for w > 0 → Can anisotropy improve this?

(Does not mean we cannot
generate structures)

(It can produce an effective cosmological fluid 
parameter wani for the equation of state)



  

Thank you for your attention!Thank you for your attention!


