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Introduction

This seminar will be partially related to my thesis.
| had to give several seminars/presentation about my
results. | am tired showing exactly the same talk over and

over again. e vew are askied (o gie 1he
This talk will be about statistical method used in T2K sdniefsennnagioguicINIinie
experiment.

Thesis has been already submitted.

| can’t. Not{again:

T~

I'mnot... strong{enough
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Outline

Outline
* Basics — Poisson
 MC Statistic — Barlow Beeston
 Another Approach

Dembinski and Abdelmotteleb
* |ce Cube —The Holy Grail
* Pearson — Test Meant to Fail
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Basics - Polisson



Introduction

In particle physics experiment we are comparing data and
parametrized MC prediction.

MC depends on some physical parameters like Highs mass,

neutrino mixing angles. On top of that we include many nuisance
parameters related to modeling of cross-section detector etc.

Such analysis is basically a counting experiment.

The probability distribution describing the counting experiment is
given by discrete Poisson distribution:
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Poisson

We usually don’t count the global number of events
but a number in a particular kinematic region often

called bin. o =
% 20 ; !
. _ L e Sl
For example, neutrino oscillations have characteristic 165 F I
shape as a function of neutrino momentum I = I
AeA N
= — 4 E "
Reconstructed Neutrino Energy (GeV)
o data .
(NMC(@)) " e MO
£(zig) =11

. Ndatay
1 1 :
where i enumerates bins of p, and cosf,, N;d"“"‘ is the number of data events in i-

th bin, while NIMC(H) is the number of events predicted by MC, and g is vector of
parameters describing our model.
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Wilks Theorem

According to Wilks’ theorem, the logarithm
of likelihood (LLH) ratio approaches asymptotically Chi2.
This works if you have big number of data points or bins.

where 50(50) is the likelihood of a null hypothesis (in this case, an ideal situation
when expected values are in perfect agreement with data, which can be written as

NIMC (50) = Nldata ) .

data . o data
Ax* = —21In (1—[ (N}\’{C(g))N’ e_N:MC(B)) +21n (H (NI-MC(BO))N’ B—N:MC(BO))

1

NMC () =Ndata _\ Ngata ; Nyl ata
=N :»22{111((@“(9)) e—N?“(‘f’))Hn((Nfata) e N )}

—

Ax? = -2 log Lstat = 22 [NIMC(
i
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LLH Scan

it 20 MAQE_samQpi
Ax? = —2log Lo =2 | NMC(F) — Ndata 4 Ndatapp [ S g
X & ~Stat Z;: i (6)— NMC(G) :
E o T T e T
—1
LLH scan helps us to determine sensitivity to a given model LA N R AN AU NSNS NN NN U S N
parameter. I N T N T Y
14— ..... StrangerConstrams
We take two MC and set both to default values of parameters, 2i ________________
one replaces data in LLH formula. If we compare such MCs, i) s Weaker Oonstrams
then for default values LLH is O. 10—% ’ R
| I SR I N SO N S A
Then we start to change value of a chosen parameter in one
MC, while the other one is fixed. Our MCs are then no longerin 6
agreement which results in increase of LLH. g
L e R i A S
Rapidly changing LLH means we are greatly sensitive to given 5 _________________
parameter. If LLH isn’t changing at all then we lack sensitivity to f | | o | | | | | |
. I I I e N B N [ [ 11 | | I
given parameter. 07081 082 083 0. 84 0.85 0.86 0.87 0.88 0.89 0.9
Variation
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Systematic Parameters

MC depends on many nuisance parameters, we have to
include detector effects like PID efficiencies, matchings.
As our detector are very complex.

Such parameters are often correlated. Thus we use
correlation matrix between different effects.

| = N i | . g
. . ) . @ = N ! = o m’.g
Each systematic parameter also has prior error. We L] . | ' g
usually take prior based on external measurements. - o
l’ . l' 1 ]
F i &
T L | 1 = ]
- _,.'I 5 - » |
' #
e BEEE S REE
l’ nt I‘ L]
& [
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Penalty Term

2D Gaussian e

The derivation presented here is not yet complete as prior uncertainties and cor-
relations of parameters are not included in Ax?. Model parameters are described by o8
multivariate normal distributions with covariances of Vj

. 1 : w2
@ =1 L Gy, i ’

i | N i | “E‘C_,’
" -
Flyx Cov Ma_}nx )
where k is dimension of @ parameter vector and Af = 6 — 6, with 8 being prior s WL Rl e L
value. # : e
b | L | k| -
i - B
LS B
l' o I' L]
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M C Statistic — BarlowBeeston



MC Statistic Uncertainty

Estimate of pi: 3.13872

Generation of MC is a stochastic process, so even
identical settings can lead to different outputs. This fact
introduces an uncertainty in the MC distributions.

10 1

0.8 1
In example if you don’t have high MC stat you will
wrongly calculate value of .

0.6 1

This is one of the reason why we generate much more i
MC than collected data.

0.2 1

Run Data (10™) | MC (10")

2a FHC 3.60 168.02 1L | , , , ,
2w FHC 4.34 120.38

3 FHC 15.93 307.80
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Reweighting basics
MC generators include several models, each model is described by several parameters.

Very often each interaction has different set of parameters for example Quasi Elastic will have different description
than Deep Inelastic Scattering.

Imagine you generate MC, you made mistake, and you produced it with twice larger xsec then it should be. What to
do: % = New Xsec / Old Xsec.

You can assign weight % to each event.
N_Events = weight * Ny,

Imagine you made different mistake: you produced MC with twice larger QE xsec and two times lower for DIS

N_Event = weigth, *N,S’Z: +weight,;s * Nijj& + ...

Those were easy examples, but you can see that using reweighting we can modify MC by indirectly modifying xsec.
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Splines and Reweighting

Imagine you can calculate xsec precisely. Although in general xsec

depends on many parameters, let’s focus on Axial Mass (MAQE) which F ( Qz) gA
can modify form factor for QE. A

When you change MAQE you change xsec, so you can calculate weight ' MQE
as a ratio of new xsec and xsec of produced MC. MAQEGraph - Event 3. Reac 1. Mat 12

New Xsec
Old Xsec

weight =

Then you can create spline which holds weights as values of MAQE o
variation. Making a spline allows to use those precalculated weights _
during the fit. We produce spline for each event. i+

Producing new MC can take days, weeks month. We can reweight full MC L
in less than 0.04 s 1!

0.6

Weights are multiplicative!!!

lux
w; = wZPOT ) wf _ wbeam _ wNDdet ) wNDcorr

1 l 1 1

-‘xsec -IIIIIIIIIIIIIIIIIIII I 1 I 1

1 1 [l [l
1 0.6 0.8 1 1.2 1.4 1.6 1.8
parameter variation

- W
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Barlow-Beeston

To account for this we introduced MC statistic to the
likelihood which account for this.

true __ gen
Beta parameters in scaling factor between true MC and NMC T /8 X NMC )
one generated.

There is one beta per each fitted bin.

In the ideal situation beta =1

% 20 i—

R

In Barlow-Beeston implementation beta is treated as a CE L

fittable parameter. If your analysis has thousand of bins 12— !
you might run into a problem. " =
JE¥
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Barlow-Beeston -> Conway

Using full Barlow-Beeston is
problematic, thus we use Conway
implementation of Barlow-Beeston

based on 10.5170/CERN-2011- Barlow-Beeston
006.115 —2log Lstat = —210g Lpoisson — 210g Ly, = Conway
_Poisson Ndata _1)2
—9 N{MC(a) o Nidata + Nidata In i _ + (ﬁz . )
I NIN[C(Q) 20}3:'

2 2 gen
w2 is as sum of weights in a particular _ﬁf ) \/_z : / MC’I;_
bin.

lux
w; = ZUIPOT ) ZU{ . w?eam

NDdet |
i

?Jl)corr
1

xsec

- W w - W;
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http://dx.doi.org/10.5170/CERN-2011-006.115
http://dx.doi.org/10.5170/CERN-2011-006.115

t'r'u,e 9 ENn
)8 X MC

There are two ways how to calculate Betas.

By assuming that Beta has Gaussian distribution we can
find it solution by solving this equation:

Bi + (Nijtc,75, — 1)Bi — Ni*og, = 0

2 2 S’E”
g, = \/Zw/ MC,ir

POT lux beam NDdet NDcorr .,.xsec
wf : W W LW,

Wi =



Beta Parameters

true gen
Ny = B X Ny,

This is example of Beta parameter after the fit.
Majority of them have Gaussian distribution.

You can values are close to 1. Which is what we would
expect.
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Non Gaussian Examples

B_param_FGD1_numuCC_0pi_0_protons_no_photon_0_122_p_ (400-450) cos8, (0.98-0.985)

tfr"u,e 5 98?1 2
X N MC 320
O
Sometimes beta are non gaussian,
although this happen when number of 100
events is very low.
80
99% of beta are Gaussian.
SO NN RN PO U 11 £ S WO U 0 I SO 8 SO 1
40 ; ; : ; : i i ____________ R
THE LORD Kidl DO N
OF THE RINGS
THE TWO
TOWERS
| [ | | 1 |
J.R.R. 0 '
: : 0.96 0.965 0.97
TOLKIEN \B parameter value
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Problem with Conway

Posterior Distribution for a selected cross-
There is big problem with the Barlow- section parameters.
Beeston.

Those describe probability of secondary
When running data fit we observed interactions inside nucleus. We know they
terrible problem where pion FSI went to O are not O!

_!!!'!!!'!!!'!!!'!!IEIIIIIII!IIIIII|:II]_ 3 !!!'!!!'!!!'!!Illll LI L LI

w
& | __ PDE | , ] i PDF ! |
® 7 u=0220-= [)36 T 1@00j'"“"““'gu"f"'ﬂ':zs;"'a =025 i
250000 Gauss.... : : ; : E - - Gauss: 5
- ;u—q 34 5—031 1 10000k n=-3.90,0= 086 :
L o o - TR
- k=001, 5—141 (+0(]60[)6) - - T wu=001,0= 040(+@09004)
20000} : — : 5 ;
....... : | dmput

80001

;—140

A A A R R L Lo i

10000}t

Ll 1 I | Ll E | -] | L | Ll I 1

G _I Ll Ll L Ll | - '—‘-:E dod l—-l—u 1 ] —l - |II L1 G I Ll 1 |- — Ll 1 1 | 1 L1 i 1 1
7 ., 0 02 04 06 08 1 12 14 16 18 02 04 06 08 1 12 14
somethingssiwiong | can feel it FEFQEH rel. nom FEFABS rel. nom
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Solution

case of identical weights. Because both the first and second moments are matched, this
approximation accounts for the variance of the CPD unlike L, which only accounts for
the mean. Thus, while Lgg is valid only for the case of narrow weight distributions, our
approximation remains valid for broader distributions. arXiv:1901.04645v2

We know our weights can hugely differ, especially FSI!

We use weights to calculate sigma.

en

‘75- = Zw-?/Nfdc i’
Solution to this problem was simple. Save values of w2 at prior RIS _ "
values.
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Another Approach
Dembinski and Abdelmotteleb



Roasting Contest

This formula for 3 is even simpler than the one
derived by Conway, and can be easily interpreted.
If a < n, B adjusts g to n, irrespective of the
actual value of 1. The bin provides no informa-

11 1 11 1T+ 1 i 1

Dembinski and Abdelmotteleb suggest
another implementation of Barlow-
Beeston. arXiv:2206.12346v2

Authors are effectively bashing | Comﬁ.fay did not derive the Sin%pli{.ied like-
Conways through whole paper ;) lihood rigorously from the exact likelihood of
Barlow and Beeston. Such a derivation is there-
fore attempted here, motivated by the wish to

WHEN A ROAST CONTEST IS gain insight in which limit Conway’s likelihood is
an adequate proxy of the exact likelihood. This

g 1 1 1 1 1 1= " |

metrically. Because of these properties, the new
approximate likelihood is expected to perform bet-
ter than Conway’s in cases where the simulated
sample is small.

_ABOUT TO TAKE PLAGE!

imgflip.
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Comparison

Conway Dembinski and Abdelmotteleb
10.5170/CERN-2011-006.115 arXiv:2206.12346v2
gen data 2
51 (N MC:%; 1)B; — N; ‘7/31 = ( p— MCFom g = data + k

Value of Beta has much simpler expression

2
(ﬁi _21) kB —k—kxIn(B)
20

Penalty term strongly resembles Poisson making interpretation simpler
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In spite of different equation
LLH scan are almost identical

.- MAQE_Sam | ; RES Eb O numu_sam
g
Im
-
o 50—
: —_— :Comvay e CONWaY
40 I : ' ! H ;
: -------- :!)aﬂbinskLAbdelniottele no W2 updaj“le -------- Dembinsl:d-Abdelmo:ttele no W2 update
30 : --------------- Dembinski-Abdelmottele W2 update ; & ¢ | T e s Dembinski-Abdelmottele W2 update
20— | :
e - O S| N S [ T T :
O S A 1. W R - ======== Dembinski-Abdelniottele no W2 update
obo Lo oo L+ s Dembinski-Abdelniottele W2 update | 0 NN FRER FREE S

0 5 10 15 20 25 30 35 40 45..50
Variation Variation



Conway vs Dembinski-Abdelmotteleb

Plots presents
posterior distribution
for several systematic
parameters.

Results without
updating w2 agree very
well between both
likelihoods.

Steps

Asimov 8 F ot Asimov - Asimo
N X2100 . ©=1.00 5L x=1.00.0=0.40 oo — =1.03,6=0.06
- Conway_noW2 B Conway_noW?2 @ L Conway_noWw?2
L u¥1.18,06=0.16 r w=134,c6=0.14 + u=113 06=0.05
25" De_n}b;résk; now2 3 Dembinski_no ﬂ\#i 5 Dembinski_now2_
- ur1.18, Jf _‘]L E j,L=1.34,0J=IJ B 87 —g‘l.‘w,o—up' i
2: \ 2.5: d}r L ﬁI=I
B B 6
L 2
151 K’I - JJiI -
B jl 151 i
1 r Frr “]l 4
i rlJI 1 i
0.5 L r
C JJJI B 2
= 0.5 L r
07 ‘u’fj L1 L1 [ L1 ""PH—L Ll L rrrFF r U
0.6 0.8 1 1.2 1.6 1.8 = L
2p2h—norm—nu 07\ AL_-I'.'...l | | | | | | 0 | J_A_A.-F" L1 i | | I L1l ||
. 1 1.2 14 1.6 1.8 0.95 1 1.05 1.1 1.25
I ASIMov Q2_norm_7
oL Xx=140,06=043 L
w » Asimov 35 SImMov
al Conway_noW2 g T " x=0.00. 5=1.00 _% r x=2.00,5=6.0
- n= 1.95, 0 = 0.12 P, 50 Conway.-noW. @t Conway, noW2
) 5: Dembinski_now2 : - T u=0306=0. 03— u=10.62,0=2:
~E w="1.00,g-0.12 : L Dembiinski_no = Dembinski_now2
u 5 A =028 6=, C 7T u=1057,06=21
3" Jr -Lll.u.LI : L : ” J]%! 0.25¢ =
- : ol -
257 JIH .;I:l i - Jﬂ 0.2
2F II : 0.6- B
- : L 0.15F
151 ‘ - J:|J L':l':ﬂ«"'l - H
- L AR,
1~ —. o )
- i 0.2f B
0.5- Ff'_.l'[r nrl-‘|“=|chﬂ‘1-_H - iy 0.05F F:HJ
O:\_A_-d‘ni | I I 1 1 L""-——‘—' L 07"1 I‘OEJ‘I‘IU 05‘|H1H‘15 O:\H\HHIH\\H\\ Ll
0.8 1 . 1.6 B e ) ; e -8 6 4 -2 0 8 10 12 14
FEFABS Pauli_Blocking_O_nu EB_dial C nu
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Updating w2 ®

When updating W2 it doesn’t
work as intented ®

Steps

S TASImov— g
....... TASt a5 XETA0 620437
S X= 070 c= 03? » Conway noW2
Conway nowz2 4 =105, 6 =0.12
T u=056,0=0.14 | % -

Demblnsk!r w2update

Dembinski-w2update | 3 F o
Dembinski_w2up 350 ="0:56, 6] %015

"5 u=0.19,6=0.13
: L5

1 3 rr LL|
I . ¢ 2.5:

| 1=

'Why 0"'6 we STlllEher'e? osE.

| | ! | | | | | ‘ }
0.8 1 1.2 1.4 1.6
FEFABS

Just to suffer?
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lce Cube — The Holy Gralil



Ice Cube

Another likelihood proposed by Ice Cube collaboration might solve all our
problems. Full derivation can be found in arXiv:1901.04645v2

Assumptions:

* Marginalize over nuisance paramreters rather then fit them directly.
This is done to not assume perfect knowledge of the nuisance
parameters from a finite number of realizations.

. A@(0))P (X
P(Mw(@)) (,! 5(0))P( 3 . |
Jo™ LXI@(0)P(N) dA There is another
* Weights are sampled from a Compound Poisson Distribution (CPD),
which can be approximated by a Scaled Poisson Distribution (SPD).
They calculated SPD, under the maximum likelihood solution for the

given MC realization, has first and second moment meaning weight
variance is included.

. e~ A /o2 2 p?/o?
ENE) = £V o) = T

Kamil Skwarczynski
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—2logL = —2 Z (ﬂ;’lﬂg(b;‘) + log|[I'(N822 4 g)] — (N9 4 ) log(b; + 1) — lﬂg[F(ﬂf)])

(A1)
where the auxiliary variables a; = Ny b +1and bj = Ny,c./ Y. w;. An example of LLH

100 - 100 ;
h BB b BB
Advantages 1 — Y 1 — X
* Include weight variance 80 o 0
* Works very well in low statistic 1 = Ice Cube ! = lce Cube
. D E ) ]
environment = 60 5 = 60- 6
b} E (<5} - —
§ -NMCz].U § -NMG—]-U
£ 40- £ 40-
. - = -
I'n)=(n-—1)!. | |
20 - 20 -
0"""""""'|I D"'I"‘I"'I"'I"'
0 20 40 60 80 100 0 20 40 60 80 100
Estimated coverage Estimated coverage



10~ 1

2
—— Xmod

IceCube is minimally slower than r
Barlow-Beeston mostly due to gamma 10—3 |/ — ~AdHoc
functions. EG

Ice Cube

R,
-+~
107°-
Number of background
components: 1
Number of data
events: 10
10_7 L L | T T rrrmm T T T TTTT
102 102 10t 10°  10¢

Number of Monte Carlo Events



—2loglL = -2 (aflug(b;) +log|[ (N 4 g)] — (N9 + g) log(b; + 1) — l(}g[l"(ﬂi)])
For technical reasons we don’t i

: : (A1)
4

.normallze Ice CUb.e’ this doesn’t where the auxiliary variables a; = fogibi +1and b; = fogi/ EW?- An example of LLH

impact the analysis as we use delta o R T

chi-square

2LLH sam, MAQE

Barlow-Beeston LLH scan B150—
. MAQE_samOpi t K
b Y8140
5 13_1|ll |
& N
16f \ Jl,r‘ . IceCube LLH scan
14: ! Stronger Constrains. JIHI 18130 [
12} | -
KT T T T R . i —
o :':‘-._ ll'll Wea?ker Constr?lns rllIll 18120 —
8 - llllL J"I‘lrr ll:'_-" :
B \ & 18110 —
- "'-\.,_ ‘|I|"IL ...__.r :
4; '-1__“"1. f y 2 :
2_ -.'"H"t .r'l‘_.-"..l 18100 __
E HL\:‘:'-.' f..-:f.:-,l — L I 1 L 1 I 1 L 1 I L 1 1 I 1 1 1 I 1 1 L I 1
0==081 082 083 084 085 0.86 087 088 083 0.9 0.98 1 1.02 1.04 1.06 1.08
Variation MAQE



Fit Results

Best-fit value with error after analysis obtained using CCQE
different likelihoods. -

Results are almost identical.

Parameter Value

Ice Cube was updating weights!!!

HER
1 : :

At least in T2K this choice doesn’t Impact results. 05
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FHC1Rmu-2021 Poisson )
22 [NMC(G) Ndata + I\Jdata]_n ( Ni ai )]

i | Barlnw—Beestun ; NMC(B)
H= _,Pmssm Barlow-Beeston (Conway)

§ ) NMC 0 Ndata N_data In i _ i
* : 2[ - : NMC () T

Bi
Ice-Cube
|21 (aslog(bi) + 1og[T(NF™ +a)] — (N + a) log(bi + 1) — log[' ()] )

P
3%

—
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Oscillated events
N
[

—
()]

: :
I :
:
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Predictions obtained after running a fit with
..... different likelihoods.
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Bonus!
Pearson — Test Meant to Fail



Pearson LLH

2.2 Uncertainties in the large-sample limit

In the large-sample regime, the Gaussian distribution |s an appropriate description of the

observed data. In this limit, the use of Pearson’s x* as a test-statistic [9] is common

practice. For a single analysis bin, Pearson’s y? is defined as

2(0) = (k —A ()\5(;))2’ arXiv:1901.04645v2 26

FGD1_numuCC_0pi_0_protons_no_photon

In my analysis we have bins with a very few number of
events. Hence, we expect that Gaussian assumption will
not work for every bin.

Il Il ‘ Il 1 1 1 ‘ Il 1 1 Il | 1 Il Il 1 | 1 Il Il 1 | Il 1 1 Il
5000 10000 15000 20000 25000 30000
Muon momentum [MeV]
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ND280 fit results

[2] = ASTITTOV Asi
G- || S B|_=mames .= "~ - ) m— ASImMo.
@ 14T -Asimov ' 50 X'=10.00,6' =045 ﬁ? B x=0.00,05=0.20
o x=1.00,6=0.11 ZINS I
& MR P [ L Barloazv%eestor& - r . BarlowBeestor
[ r =-0.16, 0= u-=-0.07;-6-=-0.18
12— w=1.24,0=0.04 1 I 3t H 3 H ’
| C Pearson \ r Pearsc
Pearson [ —— L

n
u=-0.17,6=0Q T u=004,06=0f75

2.5 ilﬁ 2.5 3
(1 2 i

-

T m=122,02004

Results are for many
cases close.

T

]
o
oo

15 Hq 1.51 JFFI
) B b'l_ 1
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T . .. . O’, _J__A}rrr‘r L ,L-H_L L O_\l_.HFF\\\ L [ T R T o™ ||
125 13 135 14 -08 -06 -04 -02 O 02 04 06 -04 -0.2 0 02 0.4 0.6
Q2_norm_5 SShell_MF_Norm_C P1_2Shell_MF_Norm_C
) Asimov Aci :
0 F Asimo 2.5 Hx = 000G E 1,00 & [ 2100 o= 5|
[ feeeeene 2 103 c=00F n ’ % F x=1.00,0=0.20 o F Asimov
10 ' | — Ba_rlo Bees_ton 4r BarlowBeeston o — X=1007¢=0.18
B BarlowBeeston - n=0.45 0=0.36 Fi— = - = » Lk
- =1.13, 0 =0.05 - w=0976=017 - BarlowBeeston
p=1150=0. 5 Pearsbn 3.5F SArSOH 7w =1.09,10-=0.07
r Pearson LT T u=024 022 F— rearson C
8 =121 6 = 0PN ’ r n=0.93, Grréllp.12 r Pearson
| n=iet, IJJ" A ..—-‘LLLH i JJ‘ ‘[I af Tk 6 =102 0,07
- - i JJJ - L

Nl\\\
e M
e B

1
h\\\\
P
=
-

1.5

e
—
—
=l
'_'_l_

—
L
—

N\\\\
'I_l_l_

il /0

J
05 L Ij?rﬁ
it J‘Jr 1 1 0.5
AN N ST N NSNS

! | | |
095 1 105 11 115 12 125 13 -0.5 0 0.5 1 15 2 0 g y 17 e 3 ° 09 1 11 12 13
MAQE Pauli_Blocking C_nu : : Dp2h_normCtoC Q2_norm_6

]
=
2
el
e

-
w

o

O TTTT

Kamil Skwarczynski 38



lce Cube Summary

For counting experiments, we use Poisson
likelihood to estimate data/MC agreement.

There are several ways to account for MC statistic
uncertainty.

Many implementation has problem when we start
updating weights.

Ice Cube confirms that using BB w/o w2 update
didn’t bias our results.

Ice Cube is superior, might be slightly slower but
no a big problem.

Choice of likelihood matters as demonstrated by
Pearson.

I prefer the real Ice Cube

| said real Ice Cuhe

~2logL = — (alog(b) + log[T (N 4 a)]
— (N 4 ) log(b+ 1) — log[[ (a)]

Perfection
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Abstract

Many analyses in particle physics are trying to determine for which set of systematic
parameters MC predictions are in the best agreement with the collected data. To describe
this agreement we use the likelihood function. There are several likelihoods suggested by
statisticians each with different assumptions. Another important issue is the treatment of
MC statistical uncertainty, which can be incorporated into the likelihood. The seminar will
discuss the impact of several likelihood functions, like Conway’s or Dembinski-
Abdelmotteleb in T2K near detector analysis.

Kamil Skwarczynski
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Perofmnce

101

—_— ":BB Number of Monte Carlo
events: 100
Number of background

r - components: 1
—3 | —— *~AdHoc _ -
10 p
G

"

£ Lef
e /
_5 ——
1075- ] :
Number of background Number of Monte Carlo
components: 1 events: 10000
Number of data Number of data
events: 10 events: 10
1D_T 2 1n3 1nd 105 16 0 1al 102 103 1 102 103 14
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Number of Monte Carlo Events Number of background components Number of data events

Figure 7. Likelihood function performance. Average single likelihood evaluation time is
shown in the vertical axis in seconds. Different line colors show different likelihoods. Leftmost
panel: the number of MC events used is shown on the horizontal axis. Center panel: the number
of background components is shown on the horizontal axis. Rightmost panel: the number of data
events is show on the horizontal axis.
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Parameters p=300 wi, 0f =300 wp

L AdHoc #k;:!_“

sznod (ﬁ%ﬂi

L) mﬁ{ﬁ (@)kmme_%_m}

Crten ()5 (k4 2) [+ )5 ()]

Lo (&) (k+ 5 +1) [k (1+£g)""+'i;“r(§§ ‘|‘1)]_1

SUPPL. TABLE 1. Table of likelihood formulas. The likelihood functions discussed in this
paper are given in each row. They are written in terms of p and o, whose explicit formulas are
given in the top row, and the number of observed events, k, in the bin. In the case of Lgp we write
the likelihood for the single-process case. Our main result and recommended likelihood, Lgg, is

given in the last row.



Full LLH

ND280bins NDMC s . ND dat ND . dat NND,data (ﬁ . 1)2
—InL = NS (f, X, dND) — N A N S — H——
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SR SKMC SK,d SK,d NP date
+ NSKMC (£ % dSK) — NSKdata | SKdataj, A
Z 1 1 NISK,MC (f; J_f: dSK)
Only ND280 uses Barlow- | Eybins E,bins
Beeston. + Z Z ;_s,f,( 1).,fﬁf;
i

. xXsecpars xsecpars
Since SK has much lower 17 P

€- 4= AR (V—l) AR
statistic that Impact of MC 2 Z ; A ¥

1

statistic should be 1 ND280det ND280det N
negligible. +5 ) Z AdND; ( dwl).}AdNDj

i

1 SKdet SKdet
+3 Z Z AdK, (Vdsg) AdSK;

| oscpars oscpars FD specific

+ Z Z Ao,(Vol)UAﬁj
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Problem with Results

In LLH calculation we include beta which work is a normalization How LLH is calculated
of each ND280 bin.

// Solve for the positive beta

However, this is done only when calculating LLH, post fit spectra double beta = (-1*temp+sqrt(temp2))/2.;

are without this correction. newmc = mc*beta;

| talked with Clarence and he agree this should be fixed. FGDIv, CC Ofc 0 protons Oy
z? | | ¢ Data :

This doesn’t affect results only ND280 best fit spectra plots. 2, Prior Predictive _
<3000 P%séfenor Pred1qt1ve
-

. ey o . (e C T‘E_ : :

Since beta are close to 1 it is not a big deal =osool O - CC multl-_n-----------é ______________
S : |
552000 nﬁmuimmMm“LmMmm

1500

tfr“u,e 98"’1
Ny = B X Ny

1000

500

‘IlllllllIII|IIII|IIII1IIII|IIII
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