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Introduction
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This seminar will be partially related to my thesis.
I had to give several seminars/presentation about my 
results. I am tired showing exactly the same talk over and 
over again.

This talk will be about statistical method used in T2K 
experiment.

Thesis has been already submitted.



Outline
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Outline
• Basics – Poisson
• MC Statistic – Barlow Beeston
• Another Approach

Dembinski and Abdelmotteleb
• Ice Cube – The Holy Grail
• Pearson – Test Meant to Fail



Basics - Poisson
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Introduction
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In particle physics experiment we are comparing data and 
parametrized MC prediction. 

MC depends on some physical parameters like Highs mass, 
neutrino mixing angles. On top of that we include many nuisance 
parameters related to modeling of cross-section detector etc.

Such analysis is basically a counting experiment.

The probability distribution describing the counting experiment is 
given by discrete Poisson distribution:



Poisson
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We usually don’t count the global number of events 
but a number in a particular kinematic region often 
called bin.

For example, neutrino oscillations have characteristic 
shape as a function of neutrino momentum



Wilks Theorem
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According to Wilks’ theorem, the logarithm
of likelihood (LLH) ratio approaches asymptotically Chi2.
This works if you have big number of data points or bins.



LLH Scan
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LLH scan helps us to determine sensitivity to a given model 
parameter.

We take two MC and set both to default values of parameters, 
one replaces data in LLH formula. If we compare such MCs, 
then for default values LLH is 0.

Then we start to change value of a chosen parameter in one 
MC, while the other one is fixed. Our MCs are then no longer in 
agreement which results in increase of LLH.

Rapidly changing LLH means we are greatly sensitive to given 
parameter. If LLH isn’t changing at all then we lack sensitivity to 
given parameter.



Systematic Parameters
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MC depends on many nuisance parameters, we have to
include detector effects like PID efficiencies, matchings. 
As our detector are very complex.

Such parameters are often correlated. Thus we use 
correlation matrix between different effects.

Each systematic parameter also has prior error. We 
usually take prior based on external measurements.



Penalty Term
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2D Gaussian

Flux Cov Matrix



Likelihood
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MC Statistic – BarlowBeeston
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MC Statistic Uncertainty
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Generation of MC is a stochastic process, so even 
identical settings can lead to different outputs. This fact 
introduces an uncertainty in the MC distributions.

In example if you don’t have high MC stat you will 
wrongly calculate value of π.

This is one of the reason why we generate much more 
MC than collected data.



Reweighting basics
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Imagine you generate MC, you made mistake, and you produced it with twice larger xsec then it should be. What to 
do: ½ = New Xsec / Old Xsec.

You can assign weight ½ to each event.

N_Events = weight * 𝑁𝑀𝐶

Imagine you made different mistake: you produced MC with twice larger 𝑄𝐸 xsec and two times lower for 𝐷𝐼𝑆

N_Event = 𝑤𝑒𝑖𝑔𝑡ℎ𝑄𝐸 *𝑁𝑀𝐶
𝑄𝐸

+ 𝑤𝑒𝑖𝑔ℎ𝑡𝐷𝐼𝑆 * 𝑁𝑀𝐶
𝐷𝐼𝑆 + …

Those were easy examples, but you can see that using reweighting we can modify MC by indirectly modifying xsec.

MC generators include several models, each model is described by several parameters.
Very often each interaction has different set of parameters for example Quasi Elastic will have different description 
than Deep Inelastic Scattering.



Splines and Reweighting
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𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑁𝑒𝑤 𝑋𝑠𝑒𝑐

𝑂𝑙𝑑 𝑋𝑠𝑒𝑐

Imagine you can calculate xsec precisely. Although in general xsec 
depends on many parameters, let’s focus on Axial Mass (MAQE) which 
can modify form factor for QE.

When you change MAQE you change xsec, so you can calculate weight 
as a ratio of new xsec and xsec of produced MC.

Then you can create spline which holds weights as values of MAQE
variation. Making a spline allows to use those precalculated weights 
during the fit. We produce spline for each event.

Producing new MC can take days, weeks month. We can reweight full MC 
in less than 0.04 s !!!

Weights are multiplicative!!!



Barlow-Beeston
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To account for this we introduced MC statistic to the 
likelihood which account for this.

Beta parameters in scaling factor between true MC and 
one generated.

There is one beta per each fitted bin.

In the ideal situation beta = 1

In Barlow-Beeston implementation beta is treated as a 
fittable parameter. If your analysis has thousand of bins 
you might run into a problem.



Barlow-Beeston -> Conway
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Barlow-Beeston
Conway

Poisson

Using full Barlow-Beeston is 
problematic, thus we use Conway 
implementation of Barlow-Beeston
based on 10.5170/CERN-2011-
006.115

w2 is as sum of weights in a particular 
bin.  

http://dx.doi.org/10.5170/CERN-2011-006.115
http://dx.doi.org/10.5170/CERN-2011-006.115


Beta Parameter
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There are two ways how to calculate Betas.

By assuming that Beta has Gaussian distribution we can 
find it solution by solving this equation:



Beta Parameters
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This is example of Beta parameter after the fit.

Majority of them have Gaussian distribution.

You can values are close to 1. Which is what we would 
expect.



Non Gaussian Examples
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Sometimes beta are non gaussian, 
although this happen when number of 
events is very low.

99% of beta are Gaussian.



Problem with Conway
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There is big problem with the Barlow-
Beeston.

When running data fit we observed 
terrible problem where pion FSI went to 0

Posterior Distribution for a selected cross-
section parameters.

Those describe probability of secondary 
interactions inside nucleus. We know they 
are not 0!



Solution
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arXiv:1901.04645v2

We know our weights can hugely differ, especially FSI!

We use weights to calculate sigma.

Solution to this problem was simple. Save values of w2 at prior 
values.



Another Approach
Dembinski and Abdelmotteleb
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Roasting Contest
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Dembinski and Abdelmotteleb suggest 
another implementation of Barlow-
Beeston. arXiv:2206.12346v2

Authors are effectively bashing 
Conways through whole paper ;) 



Comparison
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Dembinski and Abdelmotteleb
arXiv:2206.12346v2 

Conway
10.5170/CERN-2011-006.115

Value of Beta has much simpler expression

Penalty term strongly resembles Poisson making interpretation simpler

http://dx.doi.org/10.5170/CERN-2011-006.115


LLH scans
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In spite of different equation 
LLH scan are almost identical



Conway vs Dembinski-Abdelmotteleb
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Plots presents 
posterior distribution 
for several systematic 
parameters.

Results without 
updating w2 agree very 
well between both 
likelihoods.



Updating w2 
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When updating W2 it doesn’t 
work as intented 



Ice Cube – The Holy Grail
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Ice Cube
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Another likelihood proposed by Ice Cube collaboration might solve all our 
problems. Full derivation can be found in arXiv:1901.04645v2

Assumptions:
• Marginalize over nuisance paramreters rather then fit them directly. 

This is done to not assume perfect knowledge of the nuisance 
parameters from a finite number of realizations.

• Weights are sampled from a Compound Poisson Distribution (CPD), 
which can be approximated by a Scaled Poisson Distribution (SPD). 
They calculated SPD, under the maximum likelihood solution for the 
given MC realization, has first and second moment meaning weight 
variance is included.



Ice Cube
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Advantages
• Include weight variance
• Works very well in low statistic 

environment
Ice Cube Ice Cube



Performance
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Ice Cube

IceCube is minimally slower than 
Barlow-Beeston mostly due to gamma 
functions.



Ice Cube
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Barlow-Beeston LLH scan

IceCube LLH scan

For technical reasons we don’t 
normalize Ice Cube, this doesn’t 
impact the analysis as we use delta 
chi-square



Fit Results
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Best-fit value with error after analysis obtained using 
different likelihoods.

Results are almost identical.

Ice Cube was updating weights!!!

At least in T2K this choice doesn’t Impact results.



Spectra
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Poisson

Barlow-Beeston (Conway)

Ice-Cube

Predictions obtained after running a fit with 
different likelihoods.



Bonus!
Pearson – Test Meant to Fail
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Pearson LLH
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arXiv:1901.04645v2

In my analysis we have bins with a very few number of 
events. Hence, we expect that Gaussian assumption will 
not work for every bin.



ND280 fit results
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Results are for many 
cases close.

Sometimes are very 
much wrong.



Ice Cube Summary
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For counting experiments, we use Poisson 
likelihood to estimate data/MC agreement.

There are several ways to account for MC statistic 
uncertainty.

Many implementation has problem when we start 
updating weights.

Ice Cube confirms that using BB w/o w2 update 
didn’t bias our results.

Ice Cube is superior, might be slightly slower but 
no a big problem.

Choice of likelihood matters as demonstrated by 
Pearson.



Backup
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Abstract
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Many analyses in particle physics are trying to determine for which set of systematic 
parameters MC predictions are in the best agreement with the collected data. To describe 
this agreement we use the likelihood function. There are several likelihoods suggested by 
statisticians each with different assumptions. Another important issue is the treatment of 
MC statistical uncertainty, which can be incorporated into the likelihood. The seminar will 
discuss the impact of several likelihood functions, like Conway’s or Dembinski-
Abdelmotteleb in T2K near detector analysis.



Perofmnce
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LLH
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Full LLH
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Only ND280 uses Barlow-
Beeston.

Since SK has much lower 
statistic that Impact of MC 
statistic should be 
negligible.

FD specific



Problem with Results
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In LLH calculation we include beta which work is a normalization 
of each ND280 bin.

However, this is done only when calculating LLH, post fit spectra 
are without this correction.

I talked with Clarence and he agree this should be fixed.

This doesn’t affect results only ND280 best fit spectra plots.

Since beta are close to 1 it is not a big deal

How LLH is calculated
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