Extragalactic Universe: Star formation activity of galaxies

Student: Gabriele Riccio

Supervisor: Katarzyna Małek

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research Świerk

instutut kategorii A+, JRC collaboration partner

Extra-galactic universe, a "relatively" new field

M31, "Andromeda"

Edwin P. Hubble

Classification of galaxies

Credits: IOWA university

Star formation in galaxies

Credits: ESO

Definition

The SFR is by definition the mass that is turned into stars per unit time. The unit of choice is usually solar masses per year (M°/yr). It is also useful to define the SFR density, in volume or surface density, respectively ψ (in M° kpc⁻³ yr⁻¹) and Σ (in M° kpc⁻² yr⁻¹).

SFR history

The SFR is by definition the mass that is turned into stars per unit time. The unit of choice is usually solar masses per year (M°/yr). It is also useful to define the SFR density, in volume or surface density, respectively ψ (in M° kpc⁻³ yr⁻¹) and Σ (in M° kpc⁻² yr⁻¹).

Piero Madau and Mark Dickinson.

SFR history

The SFR is by definition the mass that is turned into stars per unit time. The unit of choice is usually solar masses per year (M°/yr). It is also useful to define the SFR density, in volume or surface density, respectively ψ (in M° kpc⁻³ yr⁻¹) and Σ (in M° kpc⁻² yr⁻¹).

How to have an idea on the galaxies properties?

Piero Madau and Mark Dickinson.

Is not so simple...

Credits: ESO

X-ray regime: AGN, X-ray binaries and hot gas

X-ray regime: AGN

X-ray Spectra of 2 Z=10 Quasars

X-ray regime: hot gas

 $T = 10^{6-7} K$

Credits: Michael Richmond

X-ray regime: X-ray binaries

Credits: Dotani et al. 1997

UV/OPT/NIR regime: stellar population

- Incredibly useful for SFR estimation, as directly trace the stellar population content of the galaxy.
- Very much attenuated by dust.

MIR and FIR regime: dust and PAH

Dark nebula Barnard 68 in the Milky Way (ESO)

MIR and FIR regime: dust and PAH

Dark nebula Barnard 68 in the Milky Way (ESO)

Extinction vs Attenuation

Credits: Daniela Calzetti

Attenuation laws

Dust emission

Credits: Misha Hamed

Dust emission

Credits: Misha Hamed

To summarize

Credits: Misha Hamed

Estimation of galaxies physical properties using LSST data

Riccio, G. et al. 2021

Large Survey of Space and Time

- Will observe about 18,000 *deg*² of the southern sky with 6 filters.
- the 5σ (SNR greater than 5) magnitude limits are expected to be r<24.5 for single images, and r<27.8 for the full stacked data.

LSST Project in Numbers

8,4 meters Primary mirror diameter

B 200 Megapixels Resolution of the Telescope Camera

1.23 F/D Telescope aperture

> 800 times Number of times a same object will be captured

ID TB Amount of data collected every night

AstroSpace

Source : www.astrospace-page.blogspot.com

Number of celestial objects

detected after 10 years

J Nights

imaging

ime needed for an all-sku

Seconds Exposure time needed to

capture an image

37 Billion

Why LSST?

 S_{ν}

We select a sample of 65.889 galaxies over the redshift range 0<z<2.5 from ELAIS-N1 and COSMOS fields of the Herschel Extragalactic Legacy Project (HELP) survey.

Herschel Extragalactic Legacy Project

Shirley et al. 2019

SED fitting with CIGALE

To perform the SED fitting we use the Code Investigating GALaxy Emission (CIGALE) tool (Boquien et al. 2019).

SED fitting with CIGALE

SFH+SSP+nebular+dust attenuation+dust emission+AGN

UV-to-FIR: $SFR = 37.7 M_{\odot} yr^{-1}$, $M_{star} = 6.05 \cdot 10^{10} M_{\odot}$

LSST: $SFR = 68.9 M_{\odot} yr^{-1}$, $M_{star} = 5.59 \cdot 10^{10} M_{\odot}$

How to quantify the differences?

Correction formula for the SFR:

$$log_{10} \frac{SFR_{LSST}}{SFR_{real}} = 0.26 \cdot z^2 - 0.94 \cdot z + 0.87$$

Riccio et al. 2021

How to correct the difference?

Riccio et al. 2021

AFUV vs Mstar relation

- The relation seems to deeply depends on redshift.

Conclusion part 1

- We obtain an overestimation of the dust related parameters, such as SFR, dust luminosity and dust mass. The overestimation depends on redshift.
- We corrected the SFR overestimation either adding MIR or UV observations to the LSST sample, or fitting the data with a polynomial function, obtaining: $log_{10} \frac{SFR_{LSST}}{SFR_{real}} = 0.26 \cdot z^2 - 0.94 \cdot z + 0.87.$
- The stellar mass is instead well estimated using our simulated LSST sample.
- A prior knowledge of the AFUV vs Mstar relation can be used to correct the SFR overestimation.

X-ray binaries and SFR

X-ray binaries and SFR

X-ray luminosity-SFR scaling relation

Credits: Andreas Zezas

GC-LMXB connection

A significant fraction of LMXBs was found in globular clusters, especially in E and S0 galaxies, thanks to the earliest observations with Chandra. GCs have an important role in the formation and evolution of the LMXBs.

GC-LMXB connection

dN/dlnL

Kim et al. 2006

Properties of intra-cluster LMXBs in Fornax Globular clusters

Riccio, G. et al. 2022

- We identify 168 GC-LMXBs:
- 86 host-galaxy
- 82 intra-cluster

X-ray properties of the GC-LMXBs

Field vs GC LMXBs

Credits: Riccio Gabriele

Conclusions part 2

- The fraction of GC-LMXBs is dependent on the galactocentric distance; this effect is particularly evident for the red population.
- Intra-cluster LMXBs tend to form in red and bright GCs, as has been found for their host-galaxy counterparts.
- The completeness-corrected X-ray luminosity function of the intra-cluster population of GC-LMXBs follows a power law with a slope consistent with the one found for field LMXBs in literature.

• The X-ray emission from GC-LMXBs is comparable with the one for field LMXBs.

X-ray luminosity-SFR scaling relation for a sample of eROSITA detected galaxies

Riccio et al. in prep.

X-ray luminosity-SFR scaling relation

Riccio et al. in prep.

X-ray luminosity-sSFR scaling relation

Final conclusions

- Information of AFUV could be inferred from AFUV-Mstar relation (important for future LSST studies).
- The X-ray emission from GC-LMXBs is comparable with the one for field LMXBs (important to understand the total X-ray emission of galaxies and relation with SFR).
- Future X-ray surveys could explain an offset of the Lx-SFR scaling relation in comparison with the previous studies (in preparation).

Thank you for your attention!

Modeling the X-ray emission

CIGALE

Modeling the X-ray emission

CIGALE

Why SED fitting to estimate SFR?

Buat et al. 2019

Main-sequence

- Clear difference at low redshift.
- The results overlap going to higher redshift.

Riccio et al. 2021

The difference is real?

 Intra-cluster sources are more heavily contaminated by harder background sources than the host-galaxy population.

10 contaminants

Jin et al. 2019