Quark-gluon plasma in magnetic fields

Patrycja Słoń

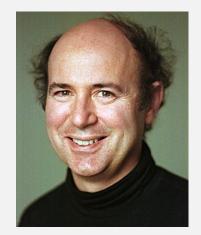
National Centre for Nuclear Research, Warsaw, Poland

Supervised by Stanisław Mrówczyński

Quarks and gluons

Quantum chromodynamics (QCD):

- color confinement
- asymptotic freedom (2004 Nobel Prize in Physics)

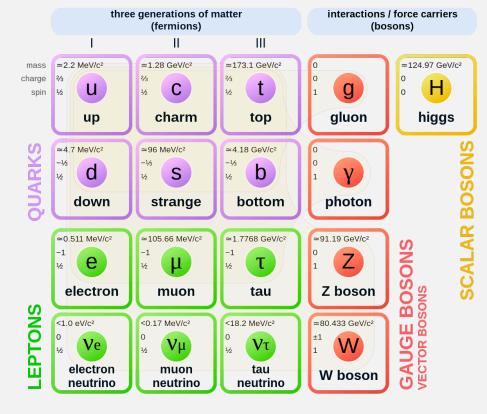


Frank Wilczek

David Jonathan Gross

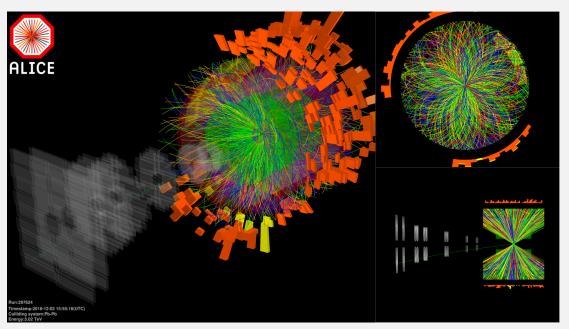
Hugh David Politzer

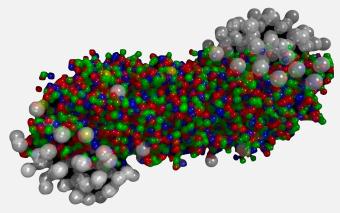
Standard Model of Elementary Particles



Quark-gluon plasma

QGP formation





Temperature: 300 MeV Energy density: 12-14 GeV/fm³

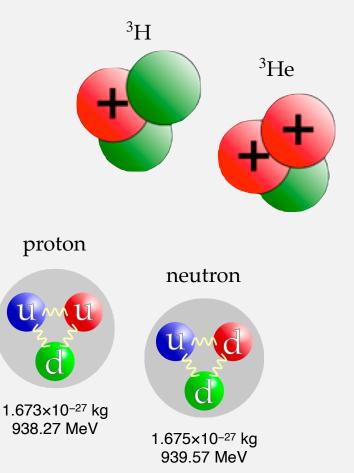
Particle trajectories and energy deposition in the ALICE detector during the last lead–lead collisions in the second LHC run

Why even bother with the electromagnetic field in the presence of the strong interaction?

Interaction	Relative strength
Strong	1038
Electromagnetic	10 ³⁶
Weak	1033
Gravitation	1

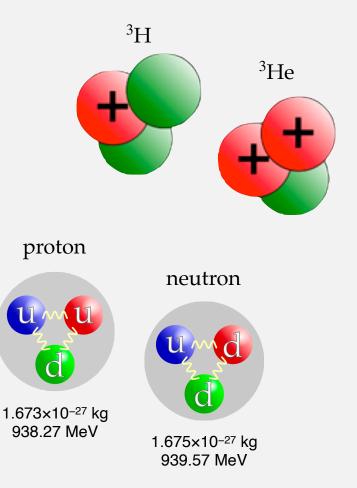
Why even bother with the electromagnetic field in the presence of the strong interaction?

Interaction	Relative strength
Strong	10 ³⁸
Electromagnetic	10 ³⁶
Weak	1033
Gravitation	1



Why even bother with the electromagnetic field in the presence of the strong interaction?

Interaction	Relative strength
Strong	1038
Electromagnetic	10 ³⁶
Weak	1033
Gravitation	1



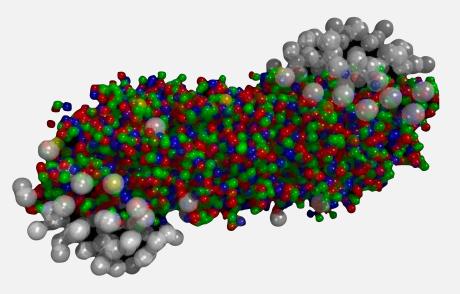
Magnetic field of a size characteristic for strong interactions

 $eB \sim m_{\pi}^2$

$$m_{\pi} = 140 \,\mathrm{MeV}$$
 $m_{\pi}^2 = 19.6 \cdot 10^3 \,\mathrm{MeV}^2$

 $eB \sim m_{\pi}^2$

- Electromagnetic field is important in the presence of the strong interaction
- Not accessible experimentally
- Magnetic field of a great amplitude appears very briefly during the relativistic heavy ion collisions
- The field is sustained according to the Faraday's law through electric currents induced by created **quark-gluon plasma**



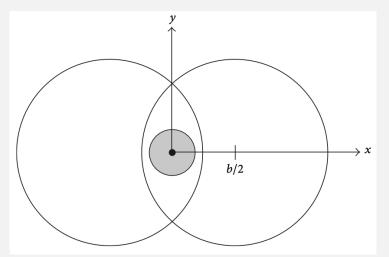
$$m_{\pi} = 140 \,\mathrm{MeV}$$
 $m_{\pi}^2 = 19.6 \cdot 10^3 \,\mathrm{MeV}^2$

What happened with the magnetic field?

- There are theoretical predictions of various phenomena influenced by the magnetic field
- Experimentally EM field's effects are not seen

The problem is described in

K. Tuchin, *Particle production in strong electromagnetic fields in relativistic heavy-ion collisions*, Adv. High Energy Phys. 2013, 490495



Heavy-ion collision geometry as seen along the collision axis z

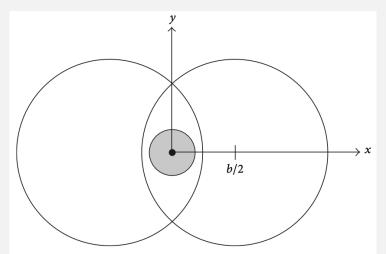
What happened with the magnetic field?

- There are theoretical predictions of various phenomena influenced by the magnetic field
- Experimentally EM field's effects are not seen

The problem is described in

K. Tuchin, *Particle production in strong electromagnetic fields in relativistic heavy-ion collisions*, Adv. High Energy Phys. 2013, 490495

What's the idea to improve the agreement between theory and experiment?



Heavy-ion collision geometry as seen along the collision axis z

What happened with the magnetic field?

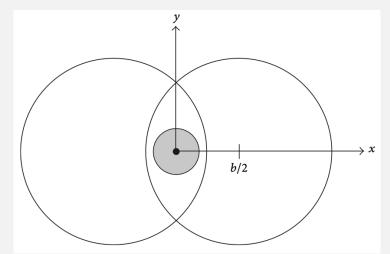
- There are theoretical predictions of various phenomena influenced by the magnetic field
- Experimentally EM field's effects are not seen

The problem is described in

K. Tuchin, *Particle production in strong electromagnetic fields in relativistic heavy-ion collisions*, Adv. High Energy Phys. 2013, 490495

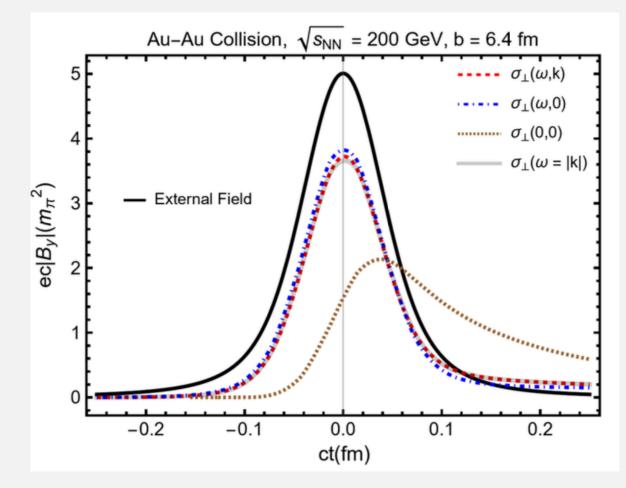
What's the idea to improve the agreement between theory and experiment?

Let's make the calculations involve some other details



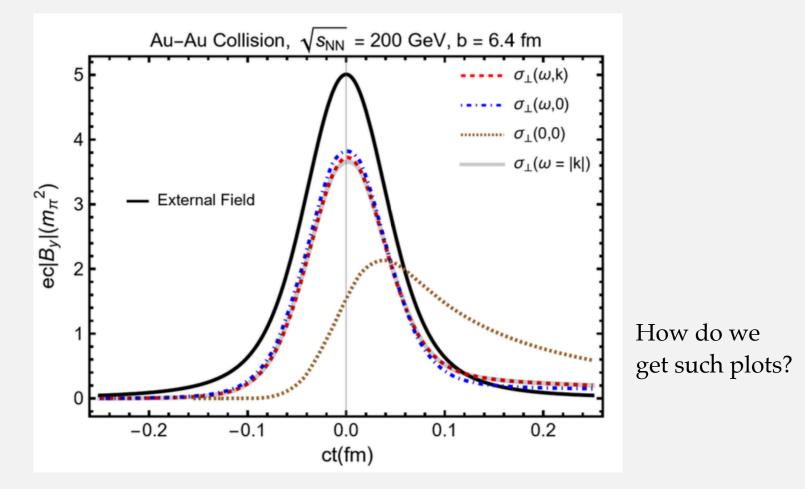
Heavy-ion collision geometry as seen along the collision axis z

Example of an improvement



C. Grayson, M. Formanek, J. Rafelski, B. Mueller, *Dynamic magnetic response of the quark-gluon plasma to electromagnetic fields*, Phys. Rev. D **106** (2022) no.1, 014011

Example of an improvement



C. Grayson, M. Formanek, J. Rafelski, B. Mueller, *Dynamic magnetic response of the quark-gluon plasma to electromagnetic fields*, Phys. Rev. D **106** (2022) no.1, 014011

Electromagnetic field in a vacuum

In the research project we want to analyze the influence of the magnetic field on various phenomena produced by particles in medium, when there's plasma. But first we need a point of reference.

Vector potential

$$\mathbf{A}(t, \mathbf{r}) = \frac{e\mathbf{v}}{\left(\mathbf{R}^2 - (\mathbf{R} \times \mathbf{v})^2\right)^{1/2}}$$

We define:

Magnetic field

$$\mathbf{R} \equiv \mathbf{r} - \mathbf{r}_0 - \mathbf{v}t$$

$$\mathbf{B}(t, \mathbf{r}) = \frac{e(1 - \mathbf{v}^2)\mathbf{v} \times \mathbf{R}}{\left(\mathbf{R}^2 - (\mathbf{R} \times \mathbf{v})^2\right)^{1/2}}$$

Available in literature

Collision of two nuclei in a vacuum

Let's set the parameters

$$\begin{cases} \mathbf{r}_{01} = (b/2,0,0), \\ \mathbf{v}_1 = (0,0,v), \\ \mathbf{R}_1 = (x - b/2, y, z - vt), \end{cases} \begin{cases} \mathbf{r}_{02} = (-b/2,0,0), \\ \mathbf{v}_2 = (0,0,-v), \\ \mathbf{R}_2 = (x + b/2, y, z + vt), \end{cases}$$

Collision of two nuclei in a vacuum

Let's set the parameters

$$\begin{cases} \mathbf{r}_{01} = (b/2,0,0), \\ \mathbf{v}_1 = (0,0,v), \\ \mathbf{R}_1 = (x - b/2, y, z - vt), \end{cases} \begin{cases} \mathbf{r}_{02} = (-b/2,0,0), \\ \mathbf{v}_2 = (0,0,-v), \\ \mathbf{R}_2 = (x + b/2, y, z + vt), \end{cases}$$

And input them in out reference equation from before

$$\mathbf{B}(t, \mathbf{r}) = \frac{q(1 - \mathbf{v}_1^2)\mathbf{v}_1 \times \mathbf{R}_1}{\left(\mathbf{R}_1^2 - (\mathbf{R}_1 \times \mathbf{v}_1)^2\right)^{3/2}} + \frac{q(1 - \mathbf{v}_2^2)\mathbf{v}_2 \times \mathbf{R}_2}{\left(\mathbf{R}_2^2 - (\mathbf{R}_2 \times \mathbf{v}_2)^2\right)^{3/2}}$$

Collision of two nuclei in a vacuum

Let's set the parameters

$$\begin{cases} \mathbf{r}_{01} = (b/2,0,0), \\ \mathbf{v}_{1} = (0,0,v), \\ \mathbf{R}_{1} = (x - b/2, y, z - vt), \end{cases} \begin{cases} \mathbf{r}_{02} = (-b/2,0,0), \\ \mathbf{v}_{2} = (0,0, -v), \\ \mathbf{R}_{2} = (x + b/2, y, z + vt), \end{cases} e|\mathbf{B}|/(m_{\pi}^{2})$$
And input them in out reference equation from before
$$\mathbf{B}(t, \mathbf{r}) = \frac{q(1 - \mathbf{v}_{1}^{2})\mathbf{v}_{1} \times \mathbf{R}_{1}}{\left(\mathbf{R}_{1}^{2} - (\mathbf{R}_{1} \times \mathbf{v}_{1})^{2}\right)^{3/2}} + \frac{q(1 - \mathbf{v}_{2}^{2})\mathbf{v}_{2} \times \mathbf{R}_{2}}{\left(\mathbf{R}_{2}^{2} - (\mathbf{R}_{2} \times \mathbf{v}_{2})^{2}\right)^{3/2}} = 10$$
Magnetic field as a function of time for Au-Au collision

Collision of two nuclei in a vacuum

Let's set the parameters

$$\begin{cases} \mathbf{r}_{01} = (b/2,0,0), \\ \mathbf{v}_{1} = (0,0,v), \\ \mathbf{R}_{1} = (x - b/2,y,z - vt), \end{cases} \begin{cases} \mathbf{r}_{02} = (-b/2,0,0), \\ \mathbf{v}_{2} = (0,0, -v), \\ \mathbf{R}_{2} = (x + b/2,y,z + vt), \end{cases} e|\mathbf{B}|/(m\pi^{2})$$
This is what we can easily reproduce with our methods
And input them in out reference equation
from before
$$\mathbf{B}(t, \mathbf{r}) = \frac{q(1 - \mathbf{v}_{1}^{2})\mathbf{v}_{1} \times \mathbf{R}_{1}}{\left(\mathbf{R}_{1}^{2} - (\mathbf{R}_{1} \times \mathbf{v}_{1})^{2}\right)^{3/2}} + \frac{q(1 - \mathbf{v}_{2}^{2})\mathbf{v}_{2} \times \mathbf{R}_{2}}{\left(\mathbf{R}_{2}^{2} - (\mathbf{R}_{2} \times \mathbf{v}_{2})^{2}\right)^{3/2}} = 0.1$$
Magnetic field as a function of time for Au-Au collision

• We can start from the Maxwell's equations in medium

 $\begin{cases} \mathbf{k} \cdot \mathbf{D}(\omega, \mathbf{k}) = 4\pi \rho_{ext}(\omega, \mathbf{k}), \\ \mathbf{k} \cdot \mathbf{B}(\omega, \mathbf{k}) = 0, \\ \mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = \omega \mathbf{B}(\omega, \mathbf{k}), \\ \mathbf{k} \times \mathbf{B}(\omega, \mathbf{k}) = -\omega \mathbf{D}(\omega, \mathbf{k}) - 4\pi i \mathbf{j}_{ext}(\omega, \mathbf{k}). \end{cases}$

Gauss's law Gauss's law for magnetism Faraday's law Modified Ampere's law

• We can start from the Maxwell's equations in medium

$$\mathbf{k} \cdot \mathbf{D}(\omega, \mathbf{k}) = 4\pi \rho_{ext}(\omega, \mathbf{k}),$$

$$\mathbf{k} \cdot \mathbf{B}(\omega, \mathbf{k}) = 0,$$

$$\mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = \omega \mathbf{B}(\omega, \mathbf{k}),$$

$$\mathbf{k} \times \mathbf{B}(\omega, \mathbf{k}) = -\omega \mathbf{D}(\omega, \mathbf{k}) - 4\pi i \mathbf{j}_{ext}(\omega, \mathbf{k}).$$

Gauss's law Gauss's law for magnetism Faraday's law Modified Ampere's law

• The displacement field **D**

 $D^{i}(\omega, \mathbf{k}) = \varepsilon^{ij}(\omega, \mathbf{k})E^{j}(\omega, \mathbf{k})$

• We can start from the Maxwell's equations in medium

3

 $\begin{cases} \mathbf{k} \cdot \mathbf{D}(\omega, \mathbf{k}) = 4\pi \rho_{ext}(\omega, \mathbf{k}), \\ \mathbf{k} \cdot \mathbf{B}(\omega, \mathbf{k}) = 0, \\ \mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = \omega \mathbf{B}(\omega, \mathbf{k}), \\ \mathbf{k} \times \mathbf{B}(\omega, \mathbf{k}) = -\omega \mathbf{D}(\omega, \mathbf{k}) - 4\pi i \mathbf{j}_{ext}(\omega, \mathbf{k}). \end{cases}$

Gauss's law Gauss's law for magnetism

- **1** Faraday's law
- 2 Modified Ampere's law

• The displacement field **D** $D^{i}(\omega, \mathbf{k}) = \varepsilon^{ij}(\omega, \mathbf{k})E^{j}(\omega, \mathbf{k})$

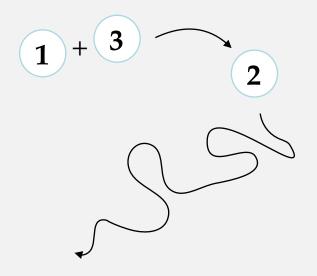
1

• We can start from the Maxwell's equations in medium

$$\begin{aligned} \mathbf{k} \cdot \mathbf{D}(\omega, \mathbf{k}) &= 4\pi \rho_{ext}(\omega, \mathbf{k}), \\ \mathbf{k} \cdot \mathbf{B}(\omega, \mathbf{k}) &= 0, \\ \mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) &= \omega \mathbf{B}(\omega, \mathbf{k}), \\ \mathbf{k} \times \mathbf{B}(\omega, \mathbf{k}) &= -\omega \mathbf{D}(\omega, \mathbf{k}) - 4\pi i \mathbf{j}_{ext}(\omega, \mathbf{k}). \end{aligned}$$

• The displacement field **D** $D^{i}(\omega, \mathbf{k}) = \varepsilon^{ij}(\omega, \mathbf{k})E^{j}(\omega, \mathbf{k})$ 3

- Gauss's law Gauss's law for magnetism Faraday's law
- 2 Modified Ampere's law



• We can start from the Maxwell's equations in medium

 $\mathbf{k} \cdot \mathbf{D}(\omega, \mathbf{k}) = 4\pi \rho_{ext}(\omega, \mathbf{k}),$ Gauss's law $\mathbf{k} \cdot \mathbf{B}(\omega, \mathbf{k}) = 0,$ $\mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = 0,$ $\mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = \omega \mathbf{B}(\omega, \mathbf{k}),$ $\mathbf{k} \times \mathbf{B}(\omega, \mathbf{k}) = -\omega \mathbf{D}(\omega, \mathbf{k}) - 4\pi i \mathbf{j}_{ext}(\omega, \mathbf{k}).$ Gauss's law for magnetism Faraday's law 1 2) Modified Ampere's law The displacement field **D** 1 +2 3 $D^{i}(\omega, \mathbf{k}) = \varepsilon^{ij}(\omega, \mathbf{k})E^{j}(\omega, \mathbf{k})$ $j_{ext}^{i}(\omega, \mathbf{k}) = \frac{i}{4\pi} \left[\frac{1}{\omega} (k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij}) + \omega\varepsilon^{ij}(\omega, \mathbf{k}) \right] E^{j}(\omega, \mathbf{k})$

The dielectric tensor $\varepsilon^{ij}(\omega, \mathbf{k})$

Provides a lot of informations about the characteristics of the magnetic field

Very useful for the analysis

• Because we are dealing with an isotropic plasma:

$$\varepsilon^{ij}(\omega, \mathbf{k}) = \varepsilon_L(\omega, \mathbf{k}) \frac{k^i k^j}{\mathbf{k}^2} + \varepsilon_T(\omega, \mathbf{k}) \left(\delta^{ij} - \frac{k^i k^j}{\mathbf{k}^2}\right)$$

The dielectric tensor $\varepsilon^{ij}(\omega, \mathbf{k})$

Provides a lot of informations about the characteristics of the magnetic field

Very useful for the analysis

• Because we are dealing with an isotropic plasma:

$$\varepsilon^{ij}(\omega, \mathbf{k}) = \varepsilon_L(\omega, \mathbf{k}) \frac{k^i k^j}{\mathbf{k}^2} + \varepsilon_T(\omega, \mathbf{k}) \left(\delta^{ij} - \frac{k^i k^j}{\mathbf{k}^2} \right)$$
$$\varepsilon_L(\omega, \mathbf{k}) = \frac{k^i k^j}{\mathbf{k}^2} \varepsilon^{ij}(\omega, \mathbf{k}) \qquad \varepsilon_T(\omega, \mathbf{k}) = \frac{1}{2} (\varepsilon^{ii}(\omega, \mathbf{k}) - \varepsilon_L(\omega, \mathbf{k}))$$

What information can those components provide?

What information can the dielectric tensor give?

Let's consider two boundary conditions

 $k \to 0$ $\omega \to 0$

What information can the dielectric tensor give?

Let's consider two boundary conditions

$$k \to 0$$
 $\omega \to 0$

$$\varepsilon_L(\omega) \stackrel{k \to 0}{=} 1 - \frac{\omega_p^2}{\omega^2}$$

Plasma frequency

$$\omega_p^2 \sim e^2 T^2$$

Indicates a normal mode of plasma oscillations

What information can the dielectric tensor give?

Let's consider two boundary conditions

$$k \to 0 \qquad \qquad \omega \to 0$$

$$\varepsilon_L(\omega) \stackrel{k \to 0}{=} 1 - \frac{\omega_p^2}{\omega^2} \qquad \qquad \varepsilon_L(\mathbf{k}) \stackrel{\omega \to 0}{=} 1 + \frac{m_D^2}{\mathbf{k}^2}$$

Plasma frequency

$$\omega_p^2 \sim e^2 T^2$$

Indicates a normal mode of plasma oscillations Debye mass

$$m_D \sim e^2 T^2/3$$

Connected to the screening length of the fields $\lambda = 1/m_D$

What's the other method of analyzing the behaviour of plasma in the electromagnetic field?

Properties of the plasma can be described by the kinetic theory

Boltzmann transport equation

$$\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_p\right] f(t, \mathbf{r}, \mathbf{p}) = C(t, \mathbf{r}, \mathbf{p})$$

 $f(t, \mathbf{r}, \mathbf{p})$ - distribution function $C(t, \mathbf{r}, \mathbf{p})$ - collision term - describes the rate of change of the distribution function *f* as a result of collisions.

What's the other method of analyzing the behaviour of plasma in the electromagnetic field?

Properties of the plasma can be described by the kinetic theory

Boltzmann transport equation

$$\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_p\right] f(t, \mathbf{r}, \mathbf{p}) = C(t, \mathbf{r}, \mathbf{p})$$

Vlasov equation

$$\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_p\right] f(t, \mathbf{r}, \mathbf{p}) = 0$$

$$(p_{\mu}\partial^{\mu} - ep_{\mu}F^{\mu\nu}\partial^{p}_{\nu})f(x,p) = 0$$

 $f(t, \mathbf{r}, \mathbf{p})$ - distribution function

 $C(t, \mathbf{r}, \mathbf{p})$ - collision term - describes the rate of change of the distribution function *f* as a result of collisions. Disappears, when:

- we study the properties of the plasma on a short time scale compared to a collision time
- the system reaches the state of local equilibrium

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$
 - field-strength tensor

How can we acquire the properties of plasma in this method?

By linearizing the Vlasov equation

• How can we find the four-current? From the Maxwell equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$:

$$j^{\nu}(x) = 2e \int \frac{d^3p}{(2\pi)^3} \frac{p^{\nu}}{E_p} [f(x,p) - \bar{f}(x,p)]$$

How can we acquire the properties of plasma in this method?

By linearizing the Vlasov equation

• How can we find the four-current? From the Maxwell equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$:

$$j^{\nu}(x) = 2e \int \frac{d^3p}{(2\pi)^3} \frac{p^{\nu}}{E_p} [f(x,p) - \bar{f}(x,p)]$$

• Distribution function as their value in equilibrium plus a small perturbation

 $\begin{aligned} f(x,p) &= f(p) + \delta f(x,p) \\ \bar{f}(x,p) &= \bar{f}(p) + \delta \bar{f}(x,p) \end{aligned}$

How can we acquire the properties of plasma in this method?

By linearizing the Vlasov equation

• How can we find the four-current? From the Maxwell equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$:

$$j^{\nu}(x) = 2e \int \frac{d^3p}{(2\pi)^3} \frac{p^{\nu}}{E_p} [f(x,p) - \bar{f}(x,p)]$$

• Distribution function as their value in equilibrium plus a small perturbation

 $f(x,p) = f(p) + \delta f(x,p)$ $\bar{f}(x,p) = \bar{f}(p) + \delta \bar{f}(x,p)$ Assumptions:

 $\begin{aligned} f(p) \gg & \left| \, \delta f(x,p) \right| \\ \bar{f}(p) \gg & \left| \, \delta \bar{f}(x,p) \right| \end{aligned}$

 $\begin{aligned} \left| \partial_{p}^{\nu} f(p) \right| &\gg \left| \partial_{p}^{\nu} \delta f(x, p) \right| \\ \left| \partial_{p}^{\nu} \bar{f}(p) \right| &\gg \left| \partial_{p}^{\nu} \delta \bar{f}(x, p) \right| \end{aligned}$

How can we acquire the properties of plasma in this method?

By linearizing the Vlasov equation

• How can we find the four-current? From the Maxwell equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$:

$$j^{\nu}(x) = 2e \int \frac{d^3p}{(2\pi)^3} \frac{p^{\nu}}{E_p} [f(x,p) - \bar{f}(x,p)]$$

• Distribution function as their value in equilibrium plus a small perturbation

 $\begin{aligned} f(x,p) &= f(p) + \delta f(x,p) \\ \bar{f}(x,p) &= \bar{f}(p) + \delta \bar{f}(x,p) \end{aligned}$

• The linearized Vlasov equation

 $p_{\mu}\partial^{\mu}\delta f(x,p) = ep_{\mu}F^{\mu\nu}\partial^{p}_{\nu}f(p) \nearrow$ $p_{\mu}\partial^{\mu}\delta \bar{f}(x,p) = -ep_{\mu}F^{\mu\nu}\partial^{p}_{\nu}\bar{f}(p)$

Assumptions:

 $\begin{aligned} f(p) \gg & \left| \delta f(x,p) \right| \\ \bar{f}(p) \gg & \left| \delta \bar{f}(x,p) \right| \end{aligned}$

 $\begin{aligned} \left| \partial_{p}^{\nu} f(p) \right| &\gg \left| \partial_{p}^{\nu} \delta f(x, p) \right| \\ \left| \partial_{p}^{\nu} \overline{f}(p) \right| &\gg \left| \partial_{p}^{\nu} \delta \overline{f}(x, p) \right| \end{aligned}$

The linearized Vlasov equation and the four-current

• The linearized Vlasov equation after the Fourier transformation

$$\begin{split} -i p_{\mu} k^{\mu} \delta f(p,k) &= -i e p_{\mu} [k^{\mu} A^{\nu}(k) - k^{\nu} A^{\mu}(k)] \delta^{p}_{\nu} f(p) \\ -i p_{\mu} k^{\mu} \delta \bar{f}(p,k) &= i e p_{\mu} [k^{\mu} A^{\nu}(k) - k^{\nu} A^{\mu}(k)] \delta^{p}_{\nu} \bar{f}(p) \end{split}$$

The linearized Vlasov equation and the four-current

• The linearized Vlasov equation after the Fourier transformation

$$\begin{split} -ip_{\mu}k^{\mu}\delta f(p,k) &= -iep_{\mu}[k^{\mu}A^{\nu}(k) - k^{\nu}A^{\mu}(k)]\delta_{\nu}^{p}f(p) \\ -ip_{\mu}k^{\mu}\delta \bar{f}(p,k) &= iep_{\mu}[k^{\mu}A^{\nu}(k) - k^{\nu}A^{\mu}(k)]\delta_{\nu}^{p}\bar{f}(p) \end{split}$$

• We solve for $\delta f(p, k)$ and $\delta \overline{f}(p, k)$

$$\begin{split} \delta f(p,k) &= \frac{e}{p_{\rho}k\rho} p_{\mu}(k^{\mu}A^{\nu} - k^{\nu}A^{\mu})\partial_{\nu}^{p}f(p) \\ \delta \bar{f}(p,k) &= -\frac{e}{p_{\rho}k\rho} p_{\mu}(k^{\mu}A^{\nu} - k^{\nu}A^{\mu})\partial_{\nu}^{p}\bar{f}(p) \end{split}$$

The linearized Vlasov equation and the four-current

• The linearized Vlasov equation after the Fourier transformation

$$\begin{split} -ip_{\mu}k^{\mu}\delta f(p,k) &= -iep_{\mu}[k^{\mu}A^{\nu}(k) - k^{\nu}A^{\mu}(k)]\delta^{p}_{\nu}f(p) \\ -ip_{\mu}k^{\mu}\delta \overline{f}(p,k) &= iep_{\mu}[k^{\mu}A^{\nu}(k) - k^{\nu}A^{\mu}(k)]\delta^{p}_{\nu}\overline{f}(p) \end{split}$$

• We solve for $\delta f(p, k)$ and $\delta \overline{f}(p, k)$

$$\begin{split} \delta f(p,k) &= \frac{e}{p_{\rho}k\rho} p_{\mu}(k^{\mu}A^{\nu} - k^{\nu}A^{\mu})\partial_{\nu}^{p}f(p) \\ \delta \bar{f}(p,k) &= -\frac{e}{p_{\rho}k\rho} p_{\mu}(k^{\mu}A^{\nu} - k^{\nu}A^{\mu})\partial_{\nu}^{p}\bar{f}(p) \end{split}$$

• The four-current

$$j^{\sigma}(k) = 4e^2 \int \frac{d^3p}{(2\pi)^3} \frac{p^{\sigma}}{E_p} \frac{p_{\mu}(k^{\mu}g^{\nu\lambda} - k^{\nu}g^{\mu\lambda})}{p_{\rho}k^{\rho}} A_{\lambda}\partial_{\nu}^p f(p)$$

What the four-current leads us to?

To other quantities useful in the field analysis

The current is connected to the potential by the polarization tensor...

 $j^{\sigma}(k) = - \Pi^{\sigma\lambda}(k) A_{\lambda}(k)$

What the four-current leads us to?

To other quantities useful in the field analysis

The current is connected to the potential by the polarization tensor...

 $j^{\sigma}(k) = - \Pi^{\sigma\lambda}(k) A_{\lambda}(k)$

...which is connected to the dielectric tensor

$$\varepsilon^{ij}(\omega, \mathbf{k}) = \delta^{ij} + \frac{1}{\omega^2} \Pi^{ij}(\omega, \mathbf{k})$$

We see there are many ways of finding quantities necessary to check how the quark-gluon plasma behaves in a magnetic field.

And what form the distribution can have?

Let's think about what constitutes the $e^2 f(p)$

We have two types of quarks, up and down, with the charges equal $\frac{2}{3}e$ and $-\frac{1}{3}e$

$$\left(\frac{2}{3}e\right)^2 f_u(p) + \left(-\frac{1}{3}e\right)^2 f_d(p) = \frac{5}{9}e^2 f_q(p) = \frac{5}{9}e^2 \frac{8}{e^{\beta E_p} + 1}$$
$$\beta = \frac{1}{T}$$

And what form the distribution can have?

Let's think about what constitutes the $e^2 f(p)$

We have two types of quarks, up and down, with the charges equal $\frac{2}{3}e$ and $-\frac{1}{3}e$

$$\left(\frac{2}{3}e\right)^2 f_u(p) + \left(-\frac{1}{3}e\right)^2 f_d(p) = \frac{5}{9}e^2 f_q(p) = \frac{5}{9}e^2 \frac{8}{e^{\beta E_p} + 1}$$
$$\beta = \frac{1}{T}$$

And why the 8?

And what form the distribution can have?

Let's think about what constitutes the $e^2 f(p)$

We have two types of quarks, up and down, with the charges equal $\frac{2}{3}e$ and $-\frac{1}{3}e$

$$\left(\frac{2}{3}e\right)^2 f_u(p) + \left(-\frac{1}{3}e\right)^2 f_d(p) = \frac{5}{9}e^2 f_q(p) = \frac{5}{9}e^2 \frac{8}{e^{\beta E_p} + 1}$$
$$\beta = \frac{1}{T}$$

$$f_u(p) = f_d(p) = f_q(p) = \frac{2 \cdot 2 \cdot 2}{e^{\beta E_p} + 1}$$

And why the 8?

- 2 types of particles
- 2 possibilities: particle or antiparticle
- 2 possible spin configurations

All this talk about the fields, let's see them!

Do you remember how we manipulated the Maxwell's equations to acquire the current density?

 $j_{ext}^{i}(\omega, \mathbf{k}) = \frac{i}{4\pi} \left[\frac{1}{\omega} (k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij}) + \omega\varepsilon^{ij}(\omega, \mathbf{k}) \right] E^{j}(\omega, \mathbf{k}) \checkmark$

All this talk about the fields, let's see them!

Do you remember how we manipulated the Maxwell's equations to acquire the current density?

 $j_{ext}^{i}(\omega, \mathbf{k}) = \frac{i}{4\pi} \left[\frac{1}{\omega} (k^{i} k^{j} - \mathbf{k}^{2} \delta^{ij}) + \omega \varepsilon^{ij}(\omega, \mathbf{k}) \right] E^{j}(\omega, \mathbf{k}) \blacktriangleleft$

We can use it to get the electric field..

$$E^{j}(\omega, \mathbf{k}) = -\frac{4\pi i}{\omega} j^{i}_{ext}(\omega, \mathbf{k}) \left[\frac{1}{\varepsilon_{L}(\omega, \mathbf{k})} \frac{k^{i}k^{j}}{\mathbf{k}^{2}} + \frac{1}{\varepsilon_{T}(\omega, \mathbf{k}) - \frac{\mathbf{k}^{2}}{\omega^{2}}} \left(\delta^{ij} - \frac{k^{i}k^{j}}{\mathbf{k}^{2}} \right) \right]$$

..and the magnetic field!

$$\mathbf{B}(\omega, \mathbf{k}) = \frac{1}{\omega} \mathbf{k} \times \mathbf{E}(\omega, \mathbf{k}) = -\frac{4\pi i}{\omega^2} \frac{1}{\varepsilon_T(\omega, \mathbf{k}) - \frac{\mathbf{k}^2}{\omega^2}} [\mathbf{k} \times \mathbf{j}_{ext}(\omega, \mathbf{k})]$$

I mentioned comparing our equation for the magnetic field with the reference point

Our equation:
$$\mathbf{B}(\omega, \mathbf{k}) = -4\pi i \frac{\mathbf{k} \times \mathbf{j}_{ext}(\omega, \mathbf{k})}{\omega^2 - \mathbf{k}^2}$$

Reference point:
$$\mathbf{B}(t, \mathbf{r}) = \frac{e(1 - \mathbf{v}^2)\mathbf{v} \times \mathbf{R}}{\left(\mathbf{R}^2 - (\mathbf{R} \times \mathbf{v})^2\right)^{1/2}}$$

I mentioned comparing our equation for the magnetic field with the reference point

Our equation:
$$\mathbf{B}(\omega, \mathbf{k}) = -4\pi i \frac{\mathbf{k} \times \mathbf{j}_{ext}(\omega, \mathbf{k})}{\omega^2 - \mathbf{k}^2}$$

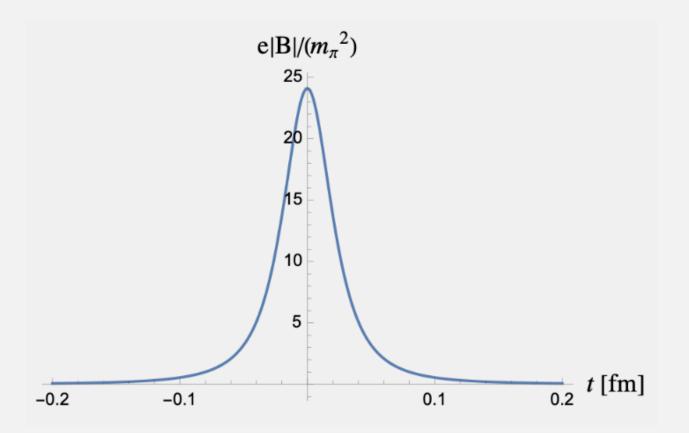
Reference point:
$$\mathbf{B}(t, \mathbf{r}) = \frac{e(1 - \mathbf{v}^2)\mathbf{v} \times \mathbf{R}}{\left(\mathbf{R}^2 - (\mathbf{R} \times \mathbf{v})^2\right)^{1/2}}$$

What do we need to do?

- Set $\varepsilon_T = 1$ for the vacuum
- Set the current density for $\mathbf{j}_{ext}(t, \mathbf{r}) = Ze\mathbf{v}\delta(\mathbf{r} \mathbf{r}_0 \mathbf{v}t)$
- Use the Fourier transformation on the magnetic field

$$\mathbf{B}(t,\mathbf{k}) = -4\pi i Z e \, \frac{\mathbf{k} \times \mathbf{v}}{(\mathbf{k} \cdot \mathbf{v})^2 - \mathbf{k}^2} \, e^{-i(\mathbf{k} \cdot \mathbf{v}t + \mathbf{k} \cdot \mathbf{r}_0)}$$

Our calculations for the magnetic field in vacuum agree with the reference point!



What about some improvements to the idea?

What do we know up to this point?

- We can study the influence of the magnetic field on various processes during the relativistic heavy ion collisions with production of the quark gluon plasma
- We need to focus on the magnetic field in the medium and choose a certain model for $\varepsilon_T(\omega, \mathbf{k})$

$$\mathbf{B}(\omega, \mathbf{k}) = -\frac{4\pi i}{\omega^2} \frac{1}{\varepsilon_T(\omega, \mathbf{k}) - \frac{\mathbf{k}^2}{\omega^2}} [\mathbf{k} \times \mathbf{j}_{ext}(\omega, \mathbf{k})]$$

What about some improvements to the idea?

What do we know up to this point?

- We can study the influence of the magnetic field on various processes during the relativistic heavy ion collisions with production of the quark gluon plasma
- We need to focus on the magnetic field in the medium and choose a certain model for $\varepsilon_T(\omega, \mathbf{k})$

$$\mathbf{B}(\omega, \mathbf{k}) = -\frac{4\pi i}{\omega^2} \frac{1}{\varepsilon_T(\omega, \mathbf{k}) - \frac{\mathbf{k}^2}{\omega^2}} [\mathbf{k} \times \mathbf{j}_{ext}(\omega, \mathbf{k})]$$

What is something that we can improve?

- This model of the magnetic field due to the heavy ion collisions is unrealistic!
- The magnetic field should be sensitive to the actual run of events (time)
- We worked in (ω, \mathbf{k}) instead (t, \mathbf{r}) to be able to use relations like $D^{i}(\omega, \mathbf{k}) = \varepsilon^{ij}(\omega, \mathbf{k})E^{j}(\omega, \mathbf{k})$

Why is it unrealistic?

What are the original model assumptions?

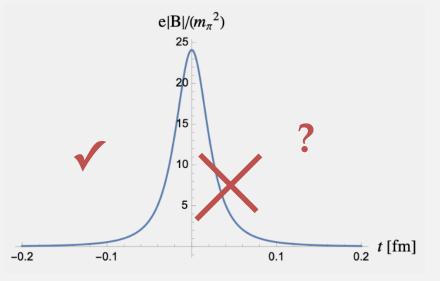
• The quark-gluon plasma exists and has electric charges since the beginning of the impact, from $t = -\infty$ to $t = \infty$.

Why is it unrealistic?

What are the original model assumptions?

• The quark-gluon plasma exists and has electric charges since the beginning of the impact, from $t = -\infty$ to $t = \infty$.

How is it in reality?



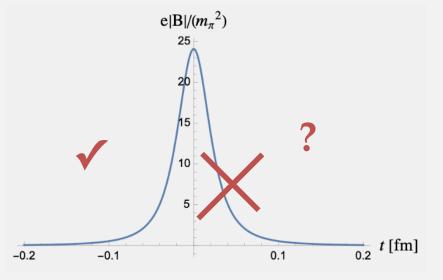
- In the first moments of the impact (t < 0) there is no plasma. Only the approaching nuclei generate the magnetic field.
- The additional fields generated due to the plasma appear at t = 0
- After t = 0 we see the effects of electromagnetic field on the quark-gluon plasma.

Why is it unrealistic?

What are the original model assumptions?

• The quark-gluon plasma exists and has electric charges since the beginning of the impact, from $t = -\infty$ to $t = \infty$.

How is it in reality?



- In the first moments of the impact (t < 0) there is no plasma. Only the approaching nuclei generate the magnetic field.
- The additional fields generated due to the plasma appear at t = 0
- After t = 0 we see the effects of electromagnetic field on the quark-gluon plasma.

What should we do about it?

• Take into the consideration the initial field values.

• We will, again, start with the Maxwell's equations...

$$\nabla \cdot \mathbf{D}(t, \mathbf{r}) = 4\pi \rho_{ext}(t, \mathbf{r}),$$

$$\nabla \cdot \mathbf{B}(t, \mathbf{r}) = 0,$$

$$\nabla \times \mathbf{E}(t, \mathbf{r}) = -\frac{\partial \mathbf{B}(t, \mathbf{r})}{\partial t},$$

$$\nabla \times \mathbf{B}(t, \mathbf{r}) = 4\pi \mathbf{j}_{ext}(t, \mathbf{r}) + \frac{\partial \mathbf{D}(t, \mathbf{r})}{\partial t}$$

...and manipulate them in an analogous way as before.

• But this time!...

- ...We will use the one-sided Fourier transform
- It will result in the appearance of the initial fields

The one-sided Fourier transform

$$f(\omega, \mathbf{k}) \equiv \int_{0}^{\infty} dt \int d^{3}r e^{i(\omega t - \mathbf{k} \cdot \mathbf{r})} f(t, \mathbf{r})$$
$$f(t, \mathbf{r}) = \int_{-\infty + i\sigma}^{\infty + i\sigma} \frac{d\omega}{2\pi} \int \frac{d^{3}k}{(2\pi)^{3}} e^{-(\omega t - \mathbf{k} \cdot \mathbf{r})} f(\omega, \mathbf{k})$$

The real parameter $\sigma > 0$ is chosen is such a way that the integral over ω is taken along a straight line in the complex ω -plane, parallel to the real axis, above all singularities of $f(\omega, \mathbf{k})$.

How do the Maxwell's equations change?

 $\begin{cases} ik^{i}\varepsilon^{ij}(\omega,\mathbf{k})E^{j}(\omega,\mathbf{k}) = 4\pi\rho_{ext}(\omega,\mathbf{k}), \\ ik^{i}B^{i}(\omega,\mathbf{k}) = 0, \\ i\varepsilon^{ijk}k^{j}E^{k}(\omega,\mathbf{k}) = i\omega B^{i}(\omega,\mathbf{k}) + \frac{B_{0}^{i}(\mathbf{k})}{B_{0}^{i}(\mathbf{k})}, \\ i\varepsilon^{ijk}k^{j}B^{k}(\omega,\mathbf{k}) = 4\pi j_{ext}^{i}(\omega,\mathbf{k}) - i\omega D^{i}(\omega,\mathbf{k}) - \frac{D_{0}^{i}(\mathbf{k})}{B_{0}^{i}(\mathbf{k})}. \end{cases}$

The initial fields have appeared!

• The electromagnetic field has changed as well

$$E^{i}(\omega, \mathbf{k}) = -i \left[\frac{1}{\omega^{2} \varepsilon_{L}(\omega, \mathbf{k})} \frac{k^{i} k^{j}}{\mathbf{k}^{2}} + \frac{1}{\omega^{2} \varepsilon_{T}(\omega, \mathbf{k}) - \mathbf{k}^{2}} \left(\delta^{ij} - \frac{k^{i} k^{j}}{\mathbf{k}^{2}} \right) \right] \times \left[4\pi \omega j_{ext}^{j}(\omega, \mathbf{k}) + \epsilon^{ijk} k^{j} B_{0}^{k}(\mathbf{k}) - \omega D_{0}^{j}(\mathbf{k}) \right]$$

$$B^{i}(\omega, \mathbf{k}) = -\frac{i}{\omega^{2} \varepsilon_{T}(\omega, \mathbf{k}) - \mathbf{k}^{2}} \left[\epsilon^{ijk} k^{j} \left(4\pi j_{ext}^{k}(\omega, \mathbf{k}) - \frac{D_{0}^{k}(\mathbf{k})}{\omega} \right) - \frac{\mathbf{k}^{2}}{\omega} B_{0}^{i}(\mathbf{k}) \right] + \frac{i}{\omega} B_{0}^{i}(\mathbf{k})$$

How do we find the initial fields?

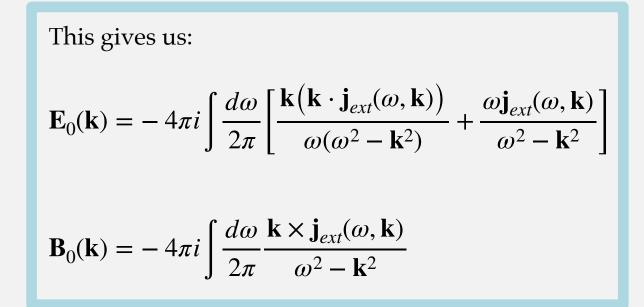
We only need to remember our conditions:

- At t < 0 there is no plasma $\Longrightarrow \mathbf{D}_0(\mathbf{k}) = \mathbf{E}_0(\mathbf{k})$
- The initial fields are generated at t = 0
- We consider a collision in a vacuum $\Longrightarrow \varepsilon^{ij}(\omega, \mathbf{k}) = \delta^{ij}, \varepsilon_T = \varepsilon_L = 1$

How do we find the initial fields?

We only need to remember our conditions:

- At t < 0 there is no plasma $\Longrightarrow \mathbf{D}_0(\mathbf{k}) = \mathbf{E}_0(\mathbf{k})$
- The initial fields are generated at t = 0
- We consider a collision in a vacuum $\Longrightarrow \varepsilon^{ij}(\omega, \mathbf{k}) = \delta^{ij}, \varepsilon_T = \varepsilon_L = 1$



How do we check if the calculated initial fields are correct?

How do we check if the calculated initial fields are correct?

- We put the found initial conditions into the equation for the magnetic field acquired through the one-sided Fourier transform
- While remembering to transform the current accordingly $\mathbf{j}_{ext}(\omega, \mathbf{k}) = i \frac{Ze\mathbf{v}e^{-i\mathbf{k}\cdot\mathbf{r}_0}}{\omega \mathbf{k}\cdot\mathbf{v} + i0^+}$
- It will give us the magnetic field at the beginning of events without the plasma

How do we check if the calculated initial fields are correct?

- We put the found initial conditions into the equation for the magnetic field acquired through the one-sided Fourier transform.
- While remembering to transform the current accordingly $\mathbf{j}_{ext}(\omega, \mathbf{k}) = i \frac{Ze\mathbf{v}e^{-i\mathbf{k}\cdot\mathbf{r}_0}}{\omega \mathbf{k}\cdot\mathbf{v} + i0^+}$
- It will give us the magnetic field at the beginning of events without the plasma

$$\mathbf{B}(t,\mathbf{k}) = -4\pi i Z e \, \frac{\mathbf{k} \times \mathbf{v}}{(\mathbf{k} \cdot \mathbf{v})^2 - \mathbf{k}^2} \, e^{-i(\mathbf{k} \cdot \mathbf{v}t + \mathbf{k} \cdot \mathbf{r}_0)}$$

The calculations give identical result to the one acquired through the two-sided Fourier transform, as in our first case!

Our calculations must be going in a right direction.

Conclusions

- Electromagnetic field is important in the presence of the strong interaction.
- A way to study the electromagnetic field is to analyze it as it appears briefly during the relativistic heavy ion collisions and is sustained by the currents in the **quark-gluon plasma** in agreement with the Faraday's law.
- There are theoretical predictions of various phenomena influenced by the magnetic field, but experimentally its effects are not seen. Why?
- We suggest that the the theoretical calculations could be done more precisely taking into consideration a more realistic run of events during the heavy ion collisions. This could bring the theoretical and experimental results closer to an agreement.
- A way to include the more precise model is to acquire the magnetic field formula using the **one-sided Fourier transform**.