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Quark-gluon plasma

QGP formation

Particle trajectories and energy deposition in the ALICE detector 
during the last lead–lead collisions in the second LHC run

Temperature: 300 MeV
Energy density: 12-14 GeV/fm3
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Magnetic field of a size 
characteristic for strong interactions

mπ = 140 MeV m2
π = 19.6 ⋅ 103 MeV2

https://en.wikipedia.org/wiki/Kilogram


eB ∼ m2
π

• Electromagnetic field is important in the presence of the strong interaction

• Not accessible experimentally 

• Magnetic field of a great amplitude appears very briefly during 
the relativistic heavy ion collisions

• The field is sustained according to the Faraday’s law  
through electric currents induced by created quark-gluon plasma

mπ = 140 MeV m2
π = 19.6 ⋅ 103 MeV2



What happened with 
the magnetic field?

The problem is described in
K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions,  
Adv. High Energy Phys. 2013, 490495

• There are theoretical predictions of various phenomena influenced by the 
magnetic field

• Experimentally EM field’s effects are not seen

Heavy-ion collision geometry as seen along the collision axis 𝑧
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The problem is described in
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• There are theoretical predictions of various phenomena influenced by the 
magnetic field

• Experimentally EM field’s effects are not seen

Heavy-ion collision geometry as seen along the collision axis 𝑧

What’s the idea to improve 
the agreement between 
theory and experiment?

Let’s make the calculations 
involve some other details 
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Example of an improvement

C. Grayson, M. Formanek, J. Rafelski, B. Mueller, Dynamic magnetic response of the 
quark-gluon plasma to electromagnetic fields, Phys. Rev. D 106 (2022) no.1, 014011

How do we 
get such plots?



Electromagnetic field in a vacuum

Vector potential

Magnetic field

A(t, r) =
ev

(R2 − (R × v)2)1/2

B(t, r) =
e(1 − v2)v × R

(R2 − (R × v)2)1/2

In the research project we want to analyze the influence of the magnetic 
field on various phenomena produced by particles in medium, when 
there’s plasma. But first we need a point of reference.

We define:

R ≡ r − r0 − vt

Available in literature



Specific example of our reference plot

r01 = (b/2,0,0),
v1 = (0,0,v),
R1 = (x − b/2,y, z − vt),

r02 = (−b/2,0,0),
v2 = (0,0, − v),
R2 = (x + b/2,y, z + vt),

Let’s set the parameters 

Collision of two nuclei in a vacuum 
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This is what we can easily 
reproduce with our methods



What are the possible methods to acquire the 
equation for magnetic field and its components?

      Gauss’s law
      Gauss’s law for magnetism
      Faraday’s law
      Modified Ampere’s law

• We can start from the Maxwell’s equations in medium

k ⋅ D(ω, k) = 4πρext(ω, k),
k ⋅ B(ω, k) = 0,
k × E(ω, k) = ωB(ω, k),
k × B(ω, k) = − ωD(ω, k) − 4πijext(ω, k) .
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The dielectric tensor  εij(ω, k)
Provides a lot of informations about the characteristics of the magnetic field

Very useful for the analysis

• Because we are dealing with an isotropic plasma:

εij(ω, k) = εL(ω, k)
kikj

k2
+ εT(ω, k)(δij −

kikj

k2 )



The dielectric tensor  εij(ω, k)

εL(ω, k) =
kikj

k2
εij(ω, k) εT(ω, k) =

1
2

(εii(ω, k) − εL(ω, k))

Provides a lot of informations about the characteristics of the magnetic field

Very useful for the analysis

• Because we are dealing with an isotropic plasma:

εij(ω, k) = εL(ω, k)
kikj

k2
+ εT(ω, k)(δij −

kikj

k2 )

What information can those components provide?
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What information can the dielectric tensor give?

Let’s consider two boundary conditions 

Plasma frequency

Indicates a normal mode 
of plasma oscillations 

k → 0

εL(ω) k→0= 1 −
ω2

p

ω2

ω2
p ∼ e2T2

 

Debye mass

Connected to the screening 
length of the fields 

ω → 0

εL(k) ω→0= 1 +
m2

D

k2

mD ∼ e2T2/3

λ = 1/mD



Properties of the plasma can be described by 
the kinetic theory

• Boltzmann transport equation

[ ∂
∂t

+ v ⋅ ∇ + q(E + v × B) ⋅ ∇p]f (t, r, p) = C(t, r, p)

What’s the other method of analyzing the behaviour 
of plasma in the electromagnetic field?

 - distribution function
 - collision term - describes the 

rate of change of the distribution function  
as a result of collisions.

f (t, r, p)
C(t, r, p)

f



Properties of the plasma can be described by 
the kinetic theory

 - field-strength tensorFμν = ∂μAν − ∂νAμ

• Boltzmann transport equation

• Vlasov equation

[ ∂
∂t

+ v ⋅ ∇ + q(E + v × B) ⋅ ∇p]f (t, r, p) = C(t, r, p)

[ ∂
∂t

+ v ⋅ ∇ + q(E + v × B) ⋅ ∇p]f (t, r, p) = 0

(pμ∂μ − epμFμν∂p
ν)f (x, p) = 0

What’s the other method of analyzing the behaviour 
of plasma in the electromagnetic field?

 - distribution function
 - collision term - describes the 

rate of change of the distribution function  
as a result of collisions. Disappears, when:
• we study the properties of the plasma on 

a short time scale compared to a collision 
time

• the system reaches the state of local 
equilibrium

f (t, r, p)
C(t, r, p)

f



By linearizing the Vlasov equation

• How can we find the four-current?  
From the Maxwell equations  :∂μFμν = jν

jν(x) = 2e∫
d3p

(2π)3

pν

Ep
[ f (x, p) − f̄ (x, p)]

How can we acquire the properties 
of plasma in this method?
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The linearized Vlasov equation and the four-current
• The linearized Vlasov equation after the Fourier transformation

−ipμkμδf (p, k) = − iepμ[kμAν(k) − kνAμ(k)]δp
ν f (p)

−ipμkμδf̄ (p, k) = iepμ[kμAν(k) − kνAμ(k)]δp
ν f̄ (p)
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The linearized Vlasov equation and the four-current
• The linearized Vlasov equation after the Fourier transformation

−ipμkμδf (p, k) = − iepμ[kμAν(k) − kνAμ(k)]δp
ν f (p)

−ipμkμδf̄ (p, k) = iepμ[kμAν(k) − kνAμ(k)]δp
ν f̄ (p)

• We solve for  and δf (p, k) δf̄ (p, k)

δf (p, k) =
e

pρkρ
pμ(kμAν − kνAμ)∂p

ν f (p)

δf̄ (p, k) = −
e

pρkρ
pμ(kμAν − kνAμ)∂p

ν f̄ (p)

• The four-current

jσ(k) = 4e2 ∫
d3p

(2π)3

pσ

Ep

pμ(kμgνλ − kνgμλ)
pρkρ

Aλ∂p
ν f (p)



What the four-current leads us to?

The current  is connected to the potential by the polarization tensor…

jσ(k) = − Πσλ(k)Aλ(k)

To other quantities useful in the field analysis 



What the four-current leads us to?

The current  is connected to the potential by the polarization tensor…

jσ(k) = − Πσλ(k)Aλ(k)

…which is connected to the dielectric tensor

εij(ω, k) = δij +
1

ω2
Πij(ω, k)

To other quantities useful in the field analysis 

We see there are many ways of finding quantities necessary to 
check how the quark-gluon plasma behaves in a magnetic field. 



And what form the distribution can have?
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1
T
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( 2
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e)
2

fu(p) + (−
1
3

e)
2

fd(p) =
5
9

e2fq(p) =
5
9

e2 8
eβEp + 1

Let’s think about what constitutes the e2f (p)

We have two types of quarks, up and down, with the charges equal  and 
2
3

e −
1
3

e

fu(p) = fd(p) = fq(p) =
2 ⋅ 2 ⋅ 2
eβEp + 1

And why the 8?

• 2 types of particles
• 2 possibilities: particle or antiparticle
• 2 possible spin configurations

β =
1
T

And what form the distribution can have?



All this talk about the fields, let’s see them!

Do you remember how we manipulated the Maxwell’s equations 
to acquire the current density?

+

ji
ext(ω, k) =

i
4π [ 1

ω
(kikj − k2δij) + ωεij(ω, k)]Ej(ω, k)



We can use it to get the electric field..

..and the magnetic field!

Ej(ω, k) = −
4πi
ω

ji
ext(ω, k)[ 1

εL(ω, k)
kikj

k2
+

1

εT(ω, k) − k2

ω2
(δij −

kikj

k2 )]

B(ω, k) =
1
ω

k × E(ω, k) = −
4πi
ω2

1

εT(ω, k) − k2

ω2

[k × jext(ω, k)]

All this talk about the fields, let’s see them!

Do you remember how we manipulated the Maxwell’s equations 
to acquire the current density?

+

ji
ext(ω, k) =

i
4π [ 1

ω
(kikj − k2δij) + ωεij(ω, k)]Ej(ω, k)



I mentioned comparing our equation for the 
magnetic field with the reference point

Our equation: 

Reference point: 

B(ω, k) = − 4πi
k × jext(ω, k)

ω2 − k2

B(t, r) =
e(1 − v2)v × R

(R2 − (R × v)2)1/2



I mentioned comparing our equation for the 
magnetic field with the reference point

Our equation: 

Reference point: 

B(ω, k) = − 4πi
k × jext(ω, k)

ω2 − k2

B(t, r) =
e(1 − v2)v × R

(R2 − (R × v)2)1/2

What do we need to do?

• Set  - for the vacuum

• Set the current density for 

• Use the Fourier transformation on the magnetic field

εT = 1

jext(t, r) = Zevδ(r − r0 − vt)

B(t, k) = − 4πiZe
k × v

(k ⋅ v)2 − k2
e−i(k⋅vt+k⋅r0)



Our calculations for the magnetic field in vacuum 
agree with the reference point!

Did it work?



What about some improvements to the idea?

What do we know up to this point?

• We can study the influence of the magnetic field on various processes during 
the relativistic heavy ion collisions with production of the quark gluon plasma

• We need to focus on the magnetic field in the medium and choose a certain 
model for εT(ω, k)

B(ω, k) = −
4πi
ω2

1

εT(ω, k) − k2

ω2

[k × jext(ω, k)]



What about some improvements to the idea?

What do we know up to this point?

• We can study the influence of the magnetic field on various processes during 
the relativistic heavy ion collisions with production of the quark gluon plasma

• We need to focus on the magnetic field in the medium and choose a certain 
model for 

What is something that we can improve?

• This model of the magnetic field due to the heavy ion collisions is unrealistic!
• The magnetic field should be sensitive to the actual run of events (time)
• We worked in  instead  to be able to use relations like  

εT(ω, k)

B(ω, k) = −
4πi
ω2

1

εT(ω, k) − k2

ω2

[k × jext(ω, k)]

(ω, k) (t, r)
Di(ω, k) = εij(ω, k)Ej(ω, k)



Why is it unrealistic?

What are the original model assumptions?

• The quark-gluon plasma exists and has 
electric charges since the beginning of 
the impact, from  to  .t = − ∞ t = ∞
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What are the original model assumptions?

• The quark-gluon plasma exists and has 
electric charges since the beginning of 
the impact, from  to  .t = − ∞ t = ∞

How is it in reality?

• In the first moments of the impact ( ) there is no plasma. 
Only the approaching nuclei generate the magnetic field.  

• The additional fields generated due to the plasma appear at 
• After  we see the effects of electromagnetic field on the 

quark-gluon plasma.

t < 0

t = 0
t = 0
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Why is it unrealistic?

What are the original model assumptions?

• The quark-gluon plasma exists and has 
electric charges since the beginning of 
the impact, from  to  .t = − ∞ t = ∞

How is it in reality?

• In the first moments of the impact ( ) there is no plasma. 
Only the approaching nuclei generate the magnetic field.  

• The additional fields generated due to the plasma appear at 
• After  we see the effects of electromagnetic field on the 

quark-gluon plasma.

t < 0

t = 0
t = 0

What should we do about it?

• Take into the consideration the initial field values.

?✓



The initial value problem

∇ ⋅ D(t, r) = 4πρext(t, r),
∇ ⋅ B(t, r) = 0,

∇ × E(t, r) = −
∂B(t, r)

∂t
,

∇ × B(t, r) = 4πjext(t, r) +
∂D(t, r)

∂t
.

• We will, again, start with the Maxwell’s equations…

…and manipulate them in an analogous way as before.

• But this time!…



f (ω, k) ≡ ∫
∞

0
dt∫ d3rei(ωt−k⋅r)f (t, r)

f (t, r) = ∫
∞+iσ

−∞+iσ

dω
2π ∫

d3k
(2π)3

e−(ωt−k⋅r)f (ω, k)

• …We will use the one-sided Fourier transform
- It will result in the appearance of the initial fields

The initial value problem

The one-sided Fourier transform

The real parameter  is chosen is 
such a way that the integral over  is 
taken along a straight line in the 
complex -plane, parallel to the real 
axis, above all singularities of . 

σ > 0
ω

ω
f (ω, k)



The initial value problem

ikiεij(ω, k)Ej(ω, k) = 4πρext(ω, k),
ikiBi(ω, k) = 0,
iϵijkkjEk(ω, k) = iωBi(ω, k) + Bi

0(k),

iϵijkkjBk(ω, k) = 4πji
ext(ω, k) − iωDi(ω, k) − Di

0(k) .

• How do the Maxwell’s equations change?

The initial fields have appeared!



Ei(ω, k) = − i[ 1
ω2εL(ω, k)

kikj

k2
+

1
ω2εT(ω, k) − k2 (δij −

kikj

k2 )] ×

× [4πωj j
ext(ω, k) + ϵijkkjBk

0(k) − ωD j
0(k)]

Bi(ω, k) = −
i

ω2εT(ω, k) − k2 [ϵijkkj(4πjk
ext(ω, k) − Dk

0(k)) −
k2

ω
Bi

0(k)] +
i
ω

Bi
0(k)

The initial value problem

• The electromagnetic field has changed as well



The initial value problem

How do we find the initial fields?

We only need to remember our conditions:
• At  there is no plasma 
• The initial fields are generated at 
• We consider a collision in a vacuum , 

t < 0 ⟹D0(k) = E0(k)
t = 0

⟹εij(ω, k) = δij εT = εL = 1



The initial value problem

How do we find the initial fields?

This gives us:

E0(k) = − 4πi∫
dω
2π [ k(k ⋅ jext(ω, k))

ω(ω2 − k2)
+

ωjext(ω, k)
ω2 − k2 ]

B0(k) = − 4πi∫
dω
2π

k × jext(ω, k)
ω2 − k2

We only need to remember our conditions:
• At  there is no plasma 
• The initial fields are generated at 
• We consider a collision in a vacuum , 

t < 0 ⟹D0(k) = E0(k)
t = 0

⟹εij(ω, k) = δij εT = εL = 1



The initial value problem

How do we check if the calculated initial fields are correct?



The initial value problem

How do we check if the calculated initial fields are correct?

• We put the found initial conditions into the equation for the magnetic field acquired 
through the one-sided Fourier transform

• While remembering to transform the current accordingly  
• It will give us the magnetic field at the beginning of events - without the plasma

jext(ω, k) = i
Zeve−ik⋅r0

ω − k ⋅ v + i0+



The initial value problem

How do we check if the calculated initial fields are correct?

• We put the found initial conditions into the equation for the magnetic field acquired 
through the one-sided Fourier transform.

• While remembering to transform the current accordingly  
• It will give us the magnetic field at the beginning of events - without the plasma

jext(ω, k) = i
Zeve−ik⋅r0

ω − k ⋅ v + i0+

B(t, k) = − 4πiZe
k × v

(k ⋅ v)2 − k2
e−i(k⋅vt+k⋅r0)

The calculations give identical result to the one acquired 
through the two-sided Fourier transform, as in our first case!

Our calculations must be going in a right direction.



Conclusions

• Electromagnetic field is important in the presence of the strong interaction.

• A way to study the electromagnetic field is to analyze it as it appears briefly 
during the relativistic heavy ion collisions and is sustained by the currents in the 
quark-gluon plasma in agreement with the Faraday’s law.

• There are theoretical predictions of various phenomena influenced by the 
magnetic field, but experimentally its effects are not seen. Why?

• We suggest that the the theoretical calculations could be done more precisely 
taking into consideration a more realistic run of events during the heavy ion 
collisions. This could bring the theoretical and experimental results closer to an 
agreement.

• A way to include the more precise model is to acquire the magnetic field formula 
using the one-sided Fourier transform.


