Exclusive processes, factorization and parton distributions

Víctor Martínez-Fernández

PhD student at the National Centre for Nuclear Research

Work in collaboration with:

- Katarzyna Deja (NCBJ)
- Bernard Pire (CPHT)
- Paweł Sznajder (NCBJ)
- Jakub Wagner (NCBJ)

- → Preliminaries: SM, PDFs, experiments in DIS
- → DVCS, TCS & DDVCS: GPD function as an extension of a PDF
- Worldwide experiments on hadron structure
- Double deeply virtual Compton scattering (DDVCS)
 - Formulation à la Kleiss & Stirling
 - Tests of our KS-based formulation
- → Summary

Nov, 24th 2022

Modern Particle Physics = Standard Model

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$$

- Gauge group of QCD
- Strongly coupled: quarks & gluons coupled to form hadrons

Modern Particle Physics = Standard Model

- How to access quarks & gluons?
 - "Hitting" hadrons with high-energy particles: (virtual) photon

- How to access quarks & gluons?
 - "Hitting" hadrons with high-energy particles: (virtual) photon
 - > Inelastic scattering:
 - Inclusive: no control over all final state particles
 - Exclusive: full control over all final state particles

- How to access quarks & gluons?
 - "Hitting" hadrons with high-energy particles: (virtual) photon
 - > Inelastic scattering:
 - Inclusive: no control over all final state particles
 - Exclusive: full control over all final state particles
 - > Quarks & gluons are collectively called *partons*

- How to access quarks & gluons?
 - "Hitting" hadrons with high-energy particles: (virtual) photon
 - > Inelastic scattering:
 - Inclusive: **no control over all** final state particles
 - Exclusive: full control over all final state particles
 - > Quarks & gluons are collectively called *partons*
 - > Late 1960s: SLAC & MIT prove the composite nature of proton

Preliminaries: elastic scattering

• Elastic scattering of electron and proton

Robert Hofstadter and Robert W. McAllister. Electron scattering from the proton. *Phys. Rev.*, 98:217–218, Apr 1955.

SLAC

Mott xsec: spinless and point-like target

$$\frac{d\sigma}{d\Omega}\Big|_{\text{Mott}} = \underbrace{\frac{Z^2 \alpha_{em}^2}{4E^2 \sin^2(\theta/2)}}_{\text{Rutherford}} \cos^2(\theta/2)$$

Rosenbluth xsec: spin-1/2 and point-like target

$$\frac{1}{90 \text{ IIO I30 I50}} \frac{1}{d\Omega dE'} \Big|_{\text{Ros, point}} = \frac{d\sigma}{d\Omega} \Big|_{\text{Mott}} \cdot \left[1 + 2\frac{Q^2}{4M^2} \tan^2(\theta/2) \right] \delta\left(\frac{Q^2}{2M} - \nu\right), \quad \nu = E - E'$$
GLE OF SCATTERING (IN DEGREES)

Nov, 24th 2022

Preliminaries: elastic scattering

• Elastic scattering of electron and proton

Robert Hofstadter and Robert W. McAllister. Electron scattering from the proton. *Phys. Rev.*, 98:217–218, Apr 1955.

SLAC

Rosenbluth xsec: spin-1/2 and extended target

$$\frac{d^2\sigma}{d\Omega dE'}\Big|_{\substack{\text{Ros,}\\\text{extended}}} = \frac{d\sigma}{d\Omega}\Big|_{\text{Mott}} \cdot \left[F_E^2(|\vec{q}|^2) + 2\frac{Q^2}{4M^2}\tan^2(\theta/2)F_M^2(|\vec{q}|^2)\right]\delta\left(\frac{Q^2}{2M} - \nu\right)$$

Proton is an extended object of radius ~10⁻¹³ cm

Preliminaries: inelastic scattering

• First experiments breaking the proton

Deep inelastic scattering (DIS): inclusive

Preliminaries: inelastic scattering

• First experiments breaking the proton

Inclusiveness in practice

Nov, 24th 2022

Preliminaries: form factors & geometric shape

• DIS xsec in terms of form factors (F₁, F₂):

$$\frac{d^2\sigma}{d\Omega dE'}\Big|_{\text{DIS}} = \frac{d\sigma}{d\Omega}\Big|_{\text{Mott}} \cdot \left[\frac{1}{\nu}F_2(x,Q^2) + \frac{2}{M}\tan^2(\theta/2)F_1(x,Q^2)\right], \quad x = \frac{Q^2}{2pq} \underbrace{=}_{\substack{\text{proton}\\\text{rest}\\\text{frame}}} \frac{Q^2}{2M\nu}$$

• If F_1 , F_2 are independent of Q^2 , then DIS = scattering with point-like particles = proton is not elementary

$$\rho(\vec{r}) \sim \int d^3 \vec{q} \; e^{i\vec{q}\vec{r}} F(|\vec{q}|^2)$$

If $F(|\vec{q}|^2) \sim \text{constant}$, then $\rho(\vec{r}) \sim \delta(\vec{r}) \Rightarrow \text{point-like target}$

Nov, 24<u>th 2022</u>

Preliminaries: inelastic scattering

Deep inelastic scattering of electrons off the proton

M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969). DOI 10.1103/PhysRevLett.23.935

SLAC + MIT

• W = 3 and 3.5 GeV:

Almost independence with q² suggests scattering off elementary (point-like or very small) particles

Preliminaries: inelastic scattering

SLAC

Almost independent of Q²: very small particles inside the proton that are interacting with each other, i.e.

$$\mathsf{F}_2(\mathsf{X},\,\mathsf{Q}^2)\sim\mathsf{F}_2(\mathsf{X})$$

Plot taken from Carolina Riedl's talk at the 61 Cracow summer school of theoretical physics: Electron-Ion Collider physics (2021)

- What does the xsec look like?
 - Factorization in inclusive processes = PDFs in xsec

$$\sigma_{\gamma N \to X} = \sum_{f} \int_{0}^{1} dx \, \sigma_{\gamma \mathfrak{q}_{f} \to X}(x) \text{PDF}_{f}(x), \quad f = \text{flavor}$$

$$\mathbf{x} = \text{longitudinal momentum fraction}$$

$$PDF_{f}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{p}^{+}z^{-}} \langle N | \bar{\mathfrak{q}}_{f}(-z/2)\gamma^{+} \mathcal{W}[-z/2, z/2] \mathfrak{q}_{f}(z/2) | N \rangle \Big|_{z_{\perp}=z^{+}=0}$$

1D distribution

Nov, 24th 2022

Preliminaries: understanding the PDF

• Wilson line: definition

$$PDF_{f}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{p}^{+}z^{-}} \langle N | \bar{\mathfrak{q}}_{f}(-z/2)\gamma^{+}\mathcal{W}[-z/2, z/2]\mathfrak{q}_{f}(z/2) | N \rangle |_{z_{\perp}=z^{+}=0}$$
$$\mathcal{W}[z_{1}^{-}, z_{2}^{-}] = \mathbb{P} \exp\left[ig \int_{z_{2}^{-}}^{z_{1}^{-}} da^{-}A^{+}(a^{-})\right]$$

Nov, 24th 2022

Preliminaries: understanding the PDF

• Wilson line: origin

$$\operatorname{PDF}_{f}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\overline{p}^{+}z^{-}} \langle N | \overline{\mathfrak{q}}_{f}(-z/2)\gamma^{+} \mathcal{W}[-z/2, z/2] \mathfrak{q}_{f}(z/2) | N \rangle \big|_{z_{\perp}=z^{+}=0}$$

Nov, 24th 2022

Preliminaries: understanding the PDF

• Gamma "plus"

$$PDF_{f}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{p}^{+}z^{-}} \langle N | \bar{\mathfrak{q}}_{f}(-z/2)\gamma^{+}\mathcal{W}[-z/2, z/2]\mathfrak{q}_{f}(z/2) | N \rangle \Big|_{z_{\perp}=z^{+}=0}$$

$$\int \gamma^{+} = \frac{\gamma^{0} + \gamma^{3}}{\sqrt{2}}$$

for a particular choice of the "plus" direction

Nov, 24th 2022

Preliminaries: PDFs as basis for experiments

HERA = Hadron-Electron Ring Accelerator DESY, Germany

Relevance of PDFs: pp collisions at LHC (CERN) are parton collisions

Preliminaries: PDFs as basis for experiments

Nov, 24th 2022

Improving PDF's picture: DVCS

• In the late '90s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through Deeply Virtual Compton Scattering (DVCS) process

Nov, 24th 2022

GPD: 3D distribution

 GPD = Generalized Parton Distribution ≈ "3D version of a PDF (Parton Distribution Function)." With x the fraction of the hadron's longitudinal momentum carried by a quark:

$$GPD_f(x,\xi,t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ix\bar{p}^+z^-} \langle N' | \bar{\mathfrak{q}}_f(-z/2) \gamma^+ \mathcal{W}[-z/2,z/2] \mathfrak{q}_f(z/2) | N \rangle \Big|_{z_\perp = z^+ = 0}$$

$$\varepsilon = \Delta^2 = (p'-p)^2, \quad \xi = -\frac{\bar{q}\Delta}{2\bar{p}\bar{q}}, \quad \rho = \frac{-\bar{q}^2}{2\bar{p}\bar{q}}, \quad \bar{q} = \frac{q+q'}{2}, \quad \bar{p} = \frac{p+p'}{2}$$

- Importance:
 - Connected to QCD energy-momentum tensor (Ji's sum rules): hadron's spin puzzle
 - Tomography: distribution of longitudinal momentum on the transverse (to hadron's motion) plane

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} \frac{H^q(x, 0, t = -\mathbf{\Delta}^2)}{\mathbf{A} \operatorname{particular GPD}}$$

Nov, 24th 2022

GPDs and spin crisis

- GPDs can be related to the energy-momentum tensor and therefore to total angular momentum
- GPDs allows to compute this amount through Ji's sum rule:

$$A^{q}(0) + B^{q}(0) = \int_{-1}^{1} x \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right] = 2J^{q}$$

- "An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons," J. Ashman et al., Nucl. Phys. B328, 1 (1989) – The European Muon Collaboration
 - Conclusion of the paper: only a small fraction of the hadron spin comes from the spin of the quarks

Nucleon tomography

Images and formulas from seminar at IJCLab (Dec 18th, 2020) by Paweł Sznajder

Nov, 24th 2022

Nucleon tomography

Position vs momentum fraction of up quarks in an unpolarized proton

"Border and skewness functions from a leading order fit to DVCS data," H. Moutarde, P. Sznajder, J. Wagner, *Eur.Phys.J.C* 78 (2018) 11, 890, DOI: 10.1140/epjc/s10052-018-6359-y

Nov, 24th 2022

DVCS amplitude

• In the late '90s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through Deeply Virtual Compton Scattering (DVCS) process

DVCS amplitude

 In the late '90s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through Deeply Virtual Compton Scattering (DVCS) process

Sketch of DVCS amplitude (LO)

$$\mathcal{A}_{\text{DVCS}} \sim \int_{-1}^{1} dx \, \frac{1}{x - \xi + i0} \text{GPD}(x, \xi, t) + \cdots$$
$$= \text{PV}\left(\int_{-1}^{1} dx \frac{1}{x - \xi} \text{GPD}(x, \xi, t)\right) - \int_{-1}^{1} dx \, i\pi \delta(x - \xi) \text{GPD}(x, \xi, t) + \cdots$$

Dispersion relation: real part can be computed in terms of imaginary

$$\Re e\mathcal{A}(\xi,t) = \operatorname{PV}\left(\int_{-1}^{1} d\xi' \; \frac{\Im m\mathcal{A}(\xi',t)}{\xi'-\xi}\right) + D(t)$$

Other channels: TCS

- TCS is experimentally more challenging: xsec smaller than DVCS' (but already measured: "First Measurement of Timelike Compton Scattering," by P. Chatagnon et al., Phys. Rev. Lett. 127, 262501 (2021) – CLAS collab.)
- TCS = timelike Compton scattering = *photoproduction of a lepton pair*

Other channels: TCS

- TCS is experimentally more challenging: xsec smaller than DVCS' (but already measured: "First Measurement of Timelike Compton Scattering," by P. Chatagnon et al., Phys. Rev. Lett. 127, 262501 (2021) – CLAS collab.)
- TCS = timelike Compton scattering = *photoproduction of a lepton pair*

Sketch of TCS amplitude (LO)

$$\mathcal{A}_{\text{TCS}} \sim \int_{-1}^{1} dx \, \frac{1}{x+\xi+i0} \text{GPD}(x,\xi,t) + \cdots$$
$$= \text{PV}\left(\int_{-1}^{1} dx \frac{1}{x+\xi} \text{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \, i\pi\delta(x+\xi) \text{GPD}(x,\xi,t) + \cdots$$

So we can measure GPDs at $x = -\xi$ only, i.e., we can access $\text{GPD}(-\xi, \xi, t)$

Nov, 24th 2022

Other channels: DDVCS

- DDVCS = double DVCS = *electroproduction of a lepton pair*
- Even more experimentally challenging than TCS

Other channels: DDVCS

- DDVCS = double DVCS = electroproduction of a lepton pair
- Even more experimentally challenging than TCS

Nov, 24th 2022

Other channels: DDVCS

- DDVCS = double DVCS = electroproduction of a lepton pair
- Even more experimentally challenging than TCS

Experiments devoted to hadron structure

The **Electron-Ion Collider (EIC)** to be built within the next decade at Brookhaven National Laboratory (BNL), USA

"Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report," R. A. Khalek et al.

Figure 1.1: Schematic layout of the planned EIC accelerator based on the existing RHIC complex at Brookhaven National Laboratory.

Nov, 24th 2022

Worldwide picture

Image courtesy of Paweł Sznajder

Nov, 24th 2022

Worldwide picture

Image courtesy of Paweł Sznajder

Nov, 24th 2022

Worldwide picture

Image courtesy of Paweł Sznajder

Nov, 24th 2022

Working out DDVCS

- DDVCS for firstly proposed by Belitsky, Mueller, Guidal and Vanderhaeghen in:
 - Exclusive Electroproduction of Lepton Pairs as a Probe of Nucleon Structure, PRL 90, 022001 (2003)
 - > Double Deeply Virtual Compton Scattering off the Nucleon, PRL 90, 012001 (2003)
- Xsec by Belitsky and Mueller in *Probing generalized parton distributions with electroproduction of lepton pairs off the nucleon*, Phys. Rev. D 68, 116005 (2003)
- That work seems to present some typos or mismatches because we cannot reproduce appropriate limits with it: taking a virtuality of DDVCS to be a reality you must recover either DVCS or TCS
- Consequently, we have performed a rederivation of DDVCS' formulae via Kleiss & Stirling's methods

Working out DDVCS

Recap: left to right: DVCS, TCS, DDVCS

- Taking a virtuality of DDVCS to be a reality you must recover either DVCS or TCS
- Consequently, we have performed a rederivation of DDVCS' formulae via Kleiss & Stirling's methods

Kleiss & Stirling's techniques (KS): the basics

- The idea of KS: compute amplitudes, not the modulus squared of them
- Transform spinor products into new scalars s and t (prevents the use of traces of Dirac gamma matrices):

$$s(p_1, p_2) := \bar{u}_+(p_1)u_-(p_2) = -s(p_2, p_1)$$
$$t(p_1, p_2) := \bar{u}_-(p_1)u_+(p_2) = [s(p_2, p_1)]^*$$
$$s(p_1, p_2) = (p_1^y + ip_1^z)\sqrt{\frac{p_2^0 - p_2^x}{p_1^0 - p_1^x}} - (p_2 \leftrightarrow p_1)$$

KS' paper: Spinor Techniques for Calculating p anti $p \rightarrow W+-/Z0 + Jets$. Nuclear Physics B262 (1985) 235-262

Nov, 24th 2022

DDVCS' set-up

KS methods are convenient for processes with many particles as DDVCS: 2 to 4 scattering
 x x

Belitsky and Mueller in "Probing generalized parton distributions with electroproduction of lepton pairs off the nucleon," Phys. Rev. D 68, 116005 (2003)

Nov, 24th 2022

Electroproduction of lepton pair = DDVCS + **BH (pure QED)**

Nov, 24th 2022

Example: BH1 à la KS

KS application to BH1 diagram of DDVCS:

$$i\widetilde{\mathcal{M}}_{BH1} = \left(\frac{ie^4}{(q'^2 + i0)(\Delta^2 + i0)((k - \Delta)^2 + i0)}\right)^{-1} i\mathcal{M}_{BH1}$$

$$i\widetilde{\mathcal{M}}_{BH1} = (F_1 + F_2) \sum_L \left(Y_{s_2s_1} f(s_\ell, \ell_-, \ell_+; s, k', L) f(s, L, k; +, r'_{s_2}, r_{s_1}) + Z_{s_2s_1} f(s_\ell, \ell_-, \ell_+; s, k', L) f(s, L, k; -, r'_{-s_2}, r_{-s_1})\right) - \frac{F_2}{2M} J_{s_2s_1}^{(2)} \sum_{L,R} f(s_\ell, \ell_-, \ell_+; s, k', L) g(s, L, R, k)$$

• For example, *f* function is defined as

$$f(s, k_0, k_1; s', k_2, k_3) = \bar{u}_s(k_0)\gamma^{\mu}u_s(k_1)\bar{u}_{s'}(k_2)\gamma_{\mu}u_{s'}(k_3)$$

that can be expressed by means of *s* and *t* KS scalars

Nov, 24th 2022

Dedicated softwares

→ PARTONS platform: open-source C++ program

- Contains several GPD models
- Leading twist... but higher twist corrections will be included in near future
- Useful for theorists and experimentalists
- Provides xsecs, Compton Form Factors, etc
- DVCS, TCS and DVMP are already included

To download and for tutorials: http://partons.cea.fr

Description of architecture: Eur. Phys. J. C78 (2018), 478

Software

Dedicated softwares

→ EpIC Monte Carlo event generator in C++

- Uses PARTONS framework
- Includes radiative corrections
- Generates the kinematic configurations following the probability distributions given by PARTONS
- DVCS, TCS and DVMP are already included

Access EpIC via GitHub:

https://github.com/pawelsznajder/epic

Detail description and architecture: arXiv:2205.01762 [hep-ph]

Nov, 24th 2022

DDVCS to DVCS

DDVCS to TCS

Evaluate energy of incoming virtual photon to be used as energy of TCS photon beam

$$\nu = \frac{Q^2}{2Mx_B}$$

Divide by flux Γ and get rid of x_B and Q^2 differentiation

$$\Gamma = \frac{\alpha_{em}}{2\pi Q^2} \left(1 + \frac{(1-y)^2}{y} - \frac{2(1-y)Q_{\min}^2}{yQ^2} \right) \frac{\nu}{Ex_B}, \qquad Q_{\min}^2 = \frac{(ym_e)^2}{1-y}$$

Nov, 24th 2022

DDVCS to DVCS

DDVCS to TCS

Evaluate energy of incoming virtual photon to be used as energy of TCS photon be what

$$\nu = \frac{Q^2}{2Mx_B}$$

Divide by flux Γ and get rid of x_B and Q^2 differentiation

$$\Gamma = \frac{\alpha_{em}}{2\pi Q^2} \left(1 + \frac{(1-y)^2}{y} - \frac{2(1-y)Q_{\min}^2}{yQ^2} \right) \frac{\nu}{Ex_B}, \qquad Q_{\min}^2 = \frac{(ym_e)^2}{1-y}$$

Nov, 24th 2022

V. Martínez-Fernández - NCBJ's Gradschool (Warsaw, PL)

these shown are shown

DVCS limit (BH1 + crossed)

 $x_B = 0.04$, t = -0.1 GeV², -q² = 10 GeV², q² \approx 0.001 GeV², E_{beam} = 160 GeV

DVCS formulae:

Belitsky et al., *Theory of deeply virtual Compton scattering on the nucleon*, Nuclear Physics B629 (2002)

Belitsky et al., *Compton scattering: from deeply virtual to quasi-real*, Nuclear Physics B878 (2014)

Nov, 24th 2022

TCS limit (BH2 + crossed)

 $x_B = 2 \cdot 10^{-4}$, t = -0.5 GeV², -q² = 2 \cdot 10^{-3} GeV², q'² = 1 GeV², E_{beam} = 12 GeV

TCS formulae:

Berger et al., *Timelike Compton scattering: exclusive photoproduction of lepton pairs*, The European Physics Journal C 23 (2002)

DVCS limit (VCS)

 $x_B = 0.04$, t = -0.01 GeV², -q² = 10 GeV², E_{beam} = 160 GeV, $\phi = 0$

Nov, 24th 2022

Nov, 24th 2022

- Xsec goes as 1/Q² meaning that there is a delicate cancellation of such a dependence on the amplitude
- As shown, these limits are not trivial and require a careful analysis

Summary

- Differences between inclusive (unknown pieces in the final state) & exclusive QCD processes (full control of all particles)
- Experimental evidence of parton structure: constant form factor with the resolution power of the probe (photon)
- Differences between 1D PDFs and 3D GPDs: tomography and total angular momentum only accessible via GPDs
- Knowledge of PDFs is fundamental to make computations in the SM wherever hadrons play a role (LHC experiments, for instance)

Summary

- New analytical formulae has been derived for the electroproduction of a lepton pair
- DDVCS is already implemented in
- We are interested in observables such as the beam spin asymmetry proportional to Im(BH x DDVCS*)
- Code will be included in
 OPPIC MC generator to study feasibility of DDVCS