

THE PROBLEM

And why should we work on it?

Exploding stars, Colliding Neutron stars

Hot Gas heated to million of degrees, Supernovae Remnants

Visible matter – stars, nebulae

Radiation from dust, Interstellar Medium

Pulsars, Quasars, Jets from Active Galactic Nuclei

Universe in optical wavelengths

Credits: ESO/Gaia

Universe in infrared wavelengths

Credits: ESO/IRAS

h

Universe emits a comparable energy density infrared and sub-mm wavelengths as it does in optical and UV.

"UNIVERSE HAS A LOT TO TELL ONLY IF YOU CHOOSE RIGHT EYES TO SEE IT"

6

SERIOUS STUFF ABOUT DSFGs

What?

Star Formation Rate estimated to few thousand solar masses per year compared to Milky Way (2 Solar Mass per year)

Why?

Unique laboratory for investigating the physics of star formation in environments far more extreme than encountered in local universe.

How?

For DSFGs at high redshift, the rest wavelength peak in the SED is shifted into the observing bands of millimeter and sub-mm instruments.

1 Solar Mass = 1.98 x 10³⁰ kgs

SERIOUS STUFF ABOUT DSFGs

What?

Star Formation Rate estimated to few thousand solar masses per year compared to Milky Way (2 Solar Mass per year)

Why?

Unique laboratory for investigating the physics of star formation in environments far more extreme than encountered in local universe.

How?

For DSFGs at high redshift, the rest wavelength peak in the SED is shifted into the observing bands of millimeter and sub-mm instruments.

DSFGs be like -

PROBLEM STATEMENT

- Galaxies in early universe have proven to be a significant challenge for theoretical models of galaxy formation.
- Are these galaxies scaled up version of local extreme galaxies or are completely different structures?
- Are we able to explain the heavy dust content at the beginning of baryon cycle in these galaxies?

THE METHOD

2.

And cups of coffee which come with it :)

GALAXIES 101

What can we see?

- Photometric flux
- Spectra
- Angular size
- Motion across the sky

What can we derive?

- Star Formation Rate (SFR)
- Stellar Mass
- Dust Mass
- Metallicity
- Age

SPECTRAL ENERGY DISTRIBUTION

What?

SED of a galaxy contains information about the processes occurred during the formation and evolution of the galaxy.

How?

Every physical process occurring in the galaxy dominates at different wavelengths.

Why?

SED allows us to derive physical properties of a galaxy.

SPOILER ALERT!

But how do we construct a SED for galaxies at high redshift?

First of all, what's high redshift?

REDSHIFT

A redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy.

Credits: webbtelescope.org

Beyond red are longer wavelengths that we can't see, starting with infrared. When light is stretched by the expansion of space, we say that it is redshifted – from its original wavelength to a longer, redder one.

HIGH REDSHIFT?

Credits: University of Iowa, ESO

Nebular Emission: Lines and Continua from Hot gas emission?

Stellar Populations: How stellar light is distributed across wavelength?

Star Formation History: How many stars formed per unit time as a function of time?

Dust Attenuation: How dust absorbs the radiation from the stars?

> *Dust Emission:* How dust re-emits the radiation?

Nebular Emission: Lines and Continua from Hot gas emission?

Stellar Populations: How stellar light is distributed across wavelength?

Dust Attenuation: How dust absorbs the radiation from the stars?

> *Dust Emission:* How dust re-emits the radiation?

> > Active Galactic Nuclei: How emission from AGNs can affect the SED of a galaxy?

> > > 17

Nebular Emission: Lines and Continua from Hot gas emission?

Dust Attenuation: How dust absorbs the radiation from the stars?

> *Dust Emission:* How dust re-emits the radiation?

Dust Attenuation: How dust absorbs the radiation from the stars?

1

Dust Emission: How dust re-emits the radiation?

10000 12000

2000

4000

6000 8000

Time [Myr]

Dust Emission: How dust re-emits the radiation?

3.5 -

10000 12000

0.5

0.0

2000

4000

6000 8000

Time [Myr]

WAIT FOR IT

Add some

redshifting

23

Boquien et al. 2019

24

CIGALE (Code Investigating GALaxy Emission)

Inputs

- Photometric Flux
- Wavelength
- Redshift
- Prior values for models

Outputs

- SEDs
- Best fit models
- Inferred values of physical parameters
 CIGALE Code Investigating GALaxy Emission

Home News Download - Changelog Documentation Publications Core team FAQ

Boquien et al. 2019

-6

WHAT DO SEDs TELL US

Star Formation Rate

Stellar Content

Dust Content

THE DATA

3.

With infinite browser tabs of arxiv and stackoverflow

REUTER ET AL. 2020

- 81 high redshift galaxies strongly gravitationally lensed DSFGs.
- Galaxies with 1.9 < z < 6.9 with median z ~ 3.9.
- Photometry available from millimeter to far infrared.

REUTER ET AL. 2020

- To create a spectroscopic redshift survey for the DSFGs identified by SPT.
- To derive values for SFR and MDust for each source.

- Sources selected using cuts on flux and signal-to-noise ratio.
- SED fitting performed using modified black body law.
- Obtained values for redshift for 81 sources.
- Derived physical parameters for each source.
- Motivates further studies regarding DSFGs (as current work).

WORKFLOW

INFRARED LUMINOSITY

- Agreement with the derived values from Reuter+20
- More constraint on the error bars

STAR FORMATION RATE

SFR derived from the Infrared Luminosity:

$$\frac{\text{SFR}}{M_{\odot} \text{ yr}^{-1}} = 1.49 \times 10^{-10} \mu^{-1} \frac{L_{\text{IR}} [8-1000 \ \mu\text{m}]}{L_{\odot}}$$

Baryon Cycle

Credits: Richard Longland

EVOLUTIONARY MODELS

Evolutionary models help us to probe the baryonic processes and test our models with observations.

- Enrichment of ISM
- Dust Growth and Destruction
- Inflow/Outflow

"We've discovered a massive dust and gas cloud which is either the beginning of a new star or just a hell of a lot of dust and gas."

SMDUST US SSFR

Specific MDust = Dust Mass/Stellar Mass Gives information about the dust cycle

Specific SFR = SFR/Stellar Mass Gives information about stellar populations

Useful to probe the baryonic evolution in galaxies

THE IMF STORY

Initial Mass Function is a function that describes the distribution of mass for a population of star. Salpeter (1955) Chabrier (2003)

THE REAL PROBLEM

- The inadequacy of the current models for reproducing the large values of sMDust for large sSFR of DSFGs.
- State-of-the-art framework adopted for interpreting the dust content in these galaxies need to be revised.

THE SOLUTION*

- We adopt a top-heavy IMF
- For this IMF, the Interstellar Medium is rapidly enriched with metals and dust.
- Hence, a large value of sMDust is attained for large values of sSFR.

*terms and conditions apply

IMF VS IMF

Final fit by assuming Chabrier IMF

Final fits for Top Heavy and Chabrier IMFs

THE SOLUTION*

- We adopt a top-heavy IMF
- For this IMF, the Interstellar Medium is rapidly enriched with metals and dust.
- Hence, a large value of sMDust is attained for large values of sSFR.

*terms and conditions apply

CONCLUSION

FINALLY.

TAKE HOME POINTS

- New Catalog of DSFGs with photometry from optical to FIR bands.
- Revised values for SFR and MDust for the DSFGs from Reuter et. al. 2020.
- Estimates for sMDust and sSFR after obtaining MStar values from CIGALE.
- Study of sources and relevant chemical evolutionary models.
- A top-heavy IMF is able to reproduce the observations (not all).
- Tension in the models and observations motivates further work.
- Drink water, REGULARLY.

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."

EXTRA SLIDES

yeah.

STELLAR MASS

 Stellar mass for some galaxies appears to be more for Top Heavy IMF

DUST MASS

 Dust Mass is strongly affected by the models used and hence a large discrepancy is found between both analysis.

EXTRA SEDs

