Constraints on Z' solutions to the flavor anomalies with asymptotic safety

Abhishek Chikkaballi

National Center for Nuclear Research (NCBJ) Warsaw, Poland

In collaboration with Wojciech Kotlarski, Kamila Kowalska, Daniele Rizzo, Enrico Sessolo Based on arXiv: <u>2209.07971</u>

13th October 2022 NCBJ, Warsaw

Physics Graduate Seminar

NATIONAL **FOR NUCLEAR** RESEARCH ŚWIERK

The Standard Model

	1																	18
1	Ĥ	2											13	14	15	16	17	He
2	Li	₿e											B	ċ	Ň	Ó	Å	⁰Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	si Si	P	16 S	ČI	År
4	19 K	ca	21 SC	²² Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	Ge	Ås	se	Br	³₀ Kr
5	³⁷ Rb	^{³®} Sr	39 Y	Žr	⁴¹ Nb	⁴² Mo	⁴³ TC	ĸ	^{₄s} Rh	Pd	Ag	Ğd	49 In	s₀ Sn	sı Sb	Te	53 	Xe
6	^{ss} Cs	₿a	*	Hf	Та	74 W	Re	os	۳ Ir	78 Pt	Au	₿ Hg	81 TI	Pb	⁸³ Bi	Po	Åt	ĸ
7	⁸⁷ Fr	[®] Ra	**	Rf	¹⁰⁵ Db	sg	Bh	HS	Mt	110 DS	Rg	Cn	Nh	FI	Мс	116 LV	TS	og 118

Lanthanide

Actinide

s*	₅ La	s∞e	۶° Pr	លឹ	Pm	s [∞]	ធ Eu	Ğd	fb	Ďу	⁵ Ho	° Er	۳m	Ϋ́b	۳ Lu
**	åc	°n Th	⁰¹ Pa	92 U	°³ Nр	⁹⁴ Pu	Åm	с́т	⁹⁷ Bk	Cf	。 Es	[™] Fm	Md	102 No	103 Lr

The Standard Model

- Fermions
 - 6 flavors of quarks and leptons
 - 3 generations
- Gauge bosons
 - Photon (γ), W^+ , Z, g
- Scalar
 - Higgs

 $\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{J}_{ij} \mathcal{J}_{jj} \mathcal{J}_{jj} \phi + h.c. \\ &+ |\mathcal{D}_{a} \phi|^{2} - V(\phi) \end{aligned}$

	1																	18
1	Ĥ	2											13	14	15	16	17	He
2	Ľi	₿e											ŝ	ĉ	" N	ů	Å	№ Ne
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	¹⁴ Si	15 P	16 S	۳ Cl	År
4	19 K	°	SC	²² Ti	V23	۲	Mn	Fe	27 Co	²⁸ Ni	29 Cu	³⁰ Zn	₅ Ga	Ge	Ås	sa Se	³⁵ Br	³⁵ Kr
5	³⁷ Rb	° sr	39 Y	²⁰ Zr	Nb	Mo	° Tc	ĸ	Rh	₽d	Åg	Ğd	in	s⁰ Sn	sı Sb	Te	53 	xe
6	^{ss} Cs	₿a	*	Hf	Та	74 W	Re	76 OS	" Ir	Pt	Au	нв	an TI	Pb	Bi	۴۹ Po	as At	Rn
7	⁸⁷ Fr	ĸa	**	Rf	Db	sg	¹⁰⁷ Bh	¹⁰⁸ Hs	Mt	110 DS	nn Rg	Cn	^{¹¹³} Nh	114 FI	мс	116 LV	Ts	og
Lanthanides*		57 La	cẽe	۶°	พืd	^₅	۶m	Ĕu	Ğd	тٌb	Ďу	но Но	Ĕr	т́т	Yb	⁷¹ Lu		
Actinides**		Åc	۳ĥ	⁰¹ Pa	92 U	Ñр	^{s₄} Pu	Å۳	cٌm	⁰7 Bk	Cf	Es	۶m	Md	N02	103 Lr		

Is everything charted?

Source gallica.bnf.fr / Ilbliothèque nationale de France.

Dark matter

Dark matter

BIG BANG SCALE SYMMETR Romulus Godang talk

Seems to be a big difference,

Matter-antimatter asymmetry

Dark matter

Matter-antimatter asymmetry

Neutrino mass

Symmetry magazine

Dark matter

Matter-antimatter asymmetry

Muon anomalous magnetic moment

Neutrino mass

Summ.

Dark matter

Matter-antimatter asymmetry

Neutrino mass

Altmannshofer

Flavor structure in the SM

$$\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AL} F^{AU} \\ &+ i F \mathcal{D} \mathcal{Y} + h.c. \end{aligned}$$

the quarks and leptons interaction with the gauge bosons

Parameterized by g_Y , g_2 , g_3

Breaks electro-weak symmetry $SU(2)_I \times U(1)_V$

Generates mass to W^{\pm} , Z

Generates mass to the quarks and leptons

Mixing of quarks

$$+ \left| \mathcal{D} \mathcal{P} \right|^2 - V(\phi)$$

+
$$\chi_i \mathcal{Y}_{ij} \mathcal{Y}_{j} \not = hc$$

Flavor structure in the SM: quarks

Physical basis are the mass basis

$$|u\rangle_{f} = U_{uu}|u\rangle_{m} + U_{uc}|c\rangle_{m} + U_{ut}|t\rangle_{m}$$

$$|d\rangle_f = D_{dd} |d\rangle_m + D_{ds} |s\rangle_m + D_{db} |b\rangle_m$$

$$\begin{aligned} \chi &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F D F + h.c. \end{aligned}$$

$$\frac{g_2}{\sqrt{2}}W^+(U^\dagger D)_{ij}\bar{u}_i\gamma^\mu d_j + h \cdot c$$
$$+\frac{g_2}{\sqrt{2}}Z(U^\dagger U)_{ij}\bar{u}_i\gamma^\mu u_j + \frac{g_2}{\sqrt{2}}Z(D^\dagger D)_{ij}\bar{d}_i\gamma^\mu d_j$$

Flavour changing neutral current are absent at the tree level

$$u_{f,i} = U_{ij} u_{m,j}, \quad d_{f,i} = D_{ij} d_{m,j},$$

 $i = 1,2,3$

Flavor structure in the SM: quarks

 $(U^{\dagger}D)_{ij}\bar{u}_i\gamma^{\mu}d_j + h.c$ $+\frac{g_2}{\sqrt{2}}Z(U^{\dagger}U)_{ij}\bar{u}_i\gamma^{\mu}u_j + \frac{g_2}{\sqrt{2}}Z(D^{\dagger}D)_{ij}\bar{d}_i\gamma^{\mu}d_j$

 W^{\pm} can induce flavor change among the quarks

 V_{CKM} is the source of flavor violation among the quarks

Lepton Flavor Universality (LFV) $g_{2,e} = g_{2,\mu} = g_{2,\tau}$

Lepton Flavor Universality Test

Confinement: hadronization of quarks

 \Rightarrow Observables during rare decays of meson

$$R_K = \frac{BR(B^+ \to K^+ \mu^- \mu^+)}{BR(B^+ \to K^+ e^- e^+)}$$

SM prediction: $R_K = 1$ Up to phase space corrections

Other observables

Branching Fractions: $B(B_s \rightarrow \mu^- \mu^+)$

Angular observables

Model-independent approach

Anomalies caused by the New Physics (NP)

Parameterizing the new physics (NP) in terms of four-fermion contact interaction

$$\begin{aligned} \mathscr{H}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i,l} \left(C_i^l O_i^l + C_i^{'l} O_i^{'l} \right) + \\ O_9^{(')\mu} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma^{\rho} P_{L(R)} b) (\bar{\mu}\gamma_{\rho}\mu), \\ O_{10}^{(')\mu} &= \frac{e^2}{16\pi^2} (\bar{s}\gamma^{\rho} P_{L(R)} b) (\bar{\mu}\gamma_{\rho}\gamma_5\mu) \end{aligned}$$

Minimal Z' models

Generic Z' coupling for the flavor anomalies

$$\begin{aligned} \mathscr{L} \supset Z'_{\rho} \left(g_{L}^{sb} \, \bar{s} \gamma^{\rho} P_{L} \, b + g_{R}^{sb} \, \bar{s} \gamma^{\rho} P_{R} \, b + g_{L}^{\mu\mu} \, \bar{\mu} \gamma^{\rho} P_{L} \, \mu + g_{R}^{\mu\mu} \right. \\ \left. C^{\mu}_{9,\mathsf{NP}} = -2 \, \frac{g_{L}^{sb} g_{V}^{\mu\mu}}{V_{tb} V_{ts}^{*}} \left(\frac{\Lambda_{v}}{m_{Z'}} \right)^{2} \, C^{\mu}_{10,\mathsf{NP}} = -2 \, \frac{g_{L}^{sb} g_{A}^{\mu\mu}}{V_{tb} V_{ts}^{*}} \right. \\ \left. g_{V}^{\mu\mu} = (g_{L}^{\mu\mu} + g_{R}^{\mu\mu})/2 \, , \quad g_{A}^{\mu\mu} = (g_{R}^{\mu\mu} - g_{L}^{\mu\mu})/2 \, , \quad \Lambda_{v} = \left(\frac{1}{\sqrt{2}} \right)^{2} \left(\frac{1}$$

$$\begin{split} g_L^{sb} \text{ is an effective coupling:} \\ \mathscr{L} \supset -\lambda_{Q,i} SQ' q_i - m_Q Q' Q + \text{H.c.} \\ \Rightarrow g_L^{sb} \approx \pm g_X Q_S \frac{\sqrt{2} m_Q \lambda_{Q,2} \lambda_{Q,3} v_S^2}{\left(2m_Q^2 + \lambda_{Q,2}^2 v_S^2\right) \sqrt{2} m_Q^2 + \left(\lambda_{Q,2}^2 v_S^2\right)} \\ g_R^{sb} \approx 0 \end{split}$$

$$\begin{array}{l} \textbf{Minimal Z' models} \\ \textbf{Model 1: VL Lepton mixing} \\ \mathscr{L} \supset \lambda_{L,i}^{(*)} S^{(*)} L' l_i + m_L L' L + \text{H.c.} \\ g_L^{\mu\mu} \approx g_X Q_L \frac{\lambda_{L,2}^2 v_S^2}{2m_L^2 + \lambda_{L,2}^2 v_S^2}, \qquad g_R^{\mu\mu} \approx 0 \end{array}$$

Model 2: Direct lepton coupling with $L_{\mu} - L_{\tau}$ Symmetry $g_{V}^{\mu\mu} = g_{X}$ $g_{A}^{\mu\mu} = 0$ $l_{1}: (\mathbf{1}, \mathbf{2}, -1/2, 0) \quad e_{R}: (\mathbf{1}, \mathbf{1}, 1, 0)$ $l_{2}: (\mathbf{1}, \mathbf{2}, -1/2, 1) \quad \mu_{R}: (\mathbf{1}, \mathbf{1}, 1, -1)$ $l_{3}: (\mathbf{1}, \mathbf{2}, -1/2, -1) \quad \tau_{R}: (\mathbf{1}, \mathbf{1}, 1, 1)$

Abhishek Chikkaballi

$$L: (\mathbf{1}, \mathbf{2}, -1/2, Q_L) \qquad L': (\mathbf{1}, \bar{\mathbf{2}}, 1/2, -Q_L)$$

Model 1A: $Q_L = Q_S$
Model 1B: $Q_L = -Q_S$

Model 1:
$$-0.53 \le C_9^{\mu} (= -C_{10}^{\mu}) \le -0.25$$

Model 2: $-1.03 \le C_9^{\mu} \le -0.43$

Problem: The constraints are only on the ratios of mass/couplings? No prediction for the NP scale

Solution: Asymptotic safety?

Abhishek Chikkaballi

Asymptotic Safety

Abhishek Chikkaballi

Asymptotic safety with gravity

Gauge coupling:
$$\beta_g = \beta_g^{SM+NP} - f_g g$$

Yukawa coupling: $\beta_y = \beta_y^{SM+NP} - f_y y$

$$\begin{array}{l} f_g \text{ and } f_y \text{ are free parameters determined by} \\ \text{matching low-energy data} \\ \text{Eg: } \beta_{g_Y} = \frac{139}{30} g_Y^3 - f_g g_Y \quad \beta_{g_X} = 11 g_X^3 - f_g g_X \\ \text{FP: } \beta_i(\{g_i\}) \bigg|_{g_i^*} = 0; \implies g_Y^* = \sqrt{\frac{30}{139}} f_g \quad g_X^* = \sqrt{11} f_g \end{array}$$

Fixed point properties:

$$\beta_{i}(\{g_{i}\}) = 0 \longrightarrow M_{ij} = \frac{\partial \beta_{i}}{\partial g_{j}} \bigg|_{\{g_{i}^{*}\}} \longrightarrow \{\theta_{i}\}$$

Stability Matrix Critical

Abhishek Chikkaballi

Quantum-Gravitational contribution

In principle via FRG

Universal: Does not distinguish internal symmetry

Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, ...

Fixed Point Analysis

Couplings pertinent to flavor anomalies:

SM: g_3 , g_2 , g_7 , y_b , y_t , V_{33} NP: g_D , g_{ϵ} , $\lambda_{O,2}$, $\lambda_{O,3}$, $\lambda_{L,2}$ With 2 family approximation

 $Log(k/10^{16} \text{ GeV})$

Predictions vary based on the models and the fixed points

 FP_{1A} FP_{1A} FP_{1E} FP_1 FP_2 FP_2

						\ <i>\</i>	
	$g_Y(k_0)$	$g_D(k_0)$	$g_\epsilon(k_0)$	$y_t(k_0)$	$\lambda_{Q,3}(k_0)$	$\lambda_{Q,2}(k_0)$	$\lambda_{L,2}(k_0)$
$^{\mathrm{A},a}$	0.364	0.305	0	1.08	-0.381	0.016	0.823
$^{\mathrm{A},b}$	0.364	0.305	0	1.09	0.034	0.803	0.606
$^{\mathrm{B},a}$	0.363	0.318	0.110	1.05	-0.612	0.296	0.652
$^{\mathrm{B},b}$	0.363	0.318	0.110	1.08	0.004	0.874	0.499
2,a	0.363	0.277	0.052	1.03	-0.700	0.638	_
2,b	0.363	0.277	0.052	1.10	0.040	0.988	_

CC values at $k_0 = 2 TeV$

Phenomenology

Kinetic terms of gauge coupling:

$$\begin{aligned} \mathscr{L} \supset -\frac{1}{4} W^{i}_{\mu\nu} W^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{1}{2} \epsilon B_{\mu\nu} X^{\mu\nu} \\ \epsilon = \frac{g_{\epsilon}}{\sqrt{g_{y}^{2} + g_{\epsilon}^{2}}} \end{aligned}$$

$$\implies m_{Z'} > 3.9 \, {\rm TeV} \quad {\rm Model \ 2}$$

 $m_{Z'} > 4.7 \, {\rm TeV} \quad {\rm Model \ 1B}$

Abhishek Chikkaballi

Phenomenology

Model 1A:

No direct constraint from kinetic mixing

Abhishek Chikkaballi

Model 1A,b:

Collider searches: $m_{Z'} > 5$ TeV

Phenomenology

Model 1A,a:

Constraints by recasting SUSY particle searches

Abhishek Chikkaballi

Conclusion

- U(1)' solutions to NC flavor anomalies embedded in a UV completion with asymptotic safety
- The RGE flow of "irrelevant" couplings from a UV fixed point gives IR predictions -> U(1) gauge couplings, kinetic mixing, Yukawa couplings
- Comparison with operators of the EFT restricts allowed mass ranges for Z' + **VL** fermions
- Enhanced predictive power w.r.t. pure pheno models -- direct LHC constraints bite deeply in parameter space
- Enticing detection prospects at Hi-Luminosity LHC

Thank you