Super-Kamiokande Atmospheric Neutrino Oscillation Results

Yousuke Kataoka (ICRR, U-Tokyo) for the Super-Kamiokande collaboration

Contents

- This talk is based on two papers
 - ▶ PRD97, 072001 (2018):

Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV

▶ PRD98, 052006 (2018):

Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokand

.. already shown on Wednesday by first author Li Zepeng

• Statistics is almost all SK 5326 days, 328 kt-yr (out of 6042 days taken so far, ~88%)

Atmospheric Neutrino

Energy spectrum measured

- generated in decay chain from primary
- $v_{\mu}/v_{e} \sim 2$ in low energy, increase in high

- E peaked at several hundreds of MeV, extended to TeV
- good flux model is available (HKKM)

Atm. Neutrino Oscillation

- travel distance (L) expand from 10km (thickness of air) to 13,000km (diameter of earch)
- L is correlated with zenith angle observed in SK
- → possible to probe oscillation parameters in wide range of L/E

$$P(\nu_{\mu} \to \nu_{\mu}) \cong 1 - 4\cos^2 \theta_{13} \sin^2 \theta_{23} (1 - \cos^2 \theta_{13} \sin^2 \theta_{23})$$
$$\times \sin^2 \left(\frac{1.27\Delta m_{31}^2 L}{E}\right) \qquad \Delta m_{31}^2 \approx \Delta m_{32}^2$$

- v_{μ} disappearance dominate
- due to matter effect, v_e appearance play a role
- large statistics of SK enables us to probe ν_e appearance, and also ν_τ appearance

 \rightarrow atmospheric neutrino sensitive to most of osc. parameters

Event Topology in SK

Zenith Angle

- Analysis based on zenith angle
- divided into samples
 - topology (FC, PC, UPMU)
 - energy (sub-GeV, multi-GeV)
 - ≻ flavor (e-like, mu-like)
- measurement of oscillation parameters performed by fitting these plots in bins
- dominated by v_{μ} disappearance
- large statistics revealing subdominant effect (v_e, v_τ)

*data is not latest in this plot

ν_{τ} appearance

- Where is missing v_{μ} ?
- It's not so easy to see because
 - ✓ interaction is rare due to threshold 3.5GeV
 - ✓ topology is similar to DIS events
- \rightarrow NN to suppress BG, and statistically search
- v_{τ} must be oscillation induced expected to be observed only in upward-going

ν_{τ} cross section measurement

extracted CC ν_{τ} cross-section

Horizontal line : 90% of energy range

Average cross-section between 3.5 and 70 GeV $(0.94 \pm 0.20) \times 10^{-38} \text{cm}^2$

Flux averaged theoretical cross-section $(0.64) \times 10^{-38} \text{cm}^2$

consistent in 1.5 σ also consistent with DONUT result

ν_e appearance

• v_e appearance brings information of parameters (θ_{13} , δ cp)

- matter effect .. maximize effective missing, enhance v_e sensitive to mass hierarchy
 - \succ solar term .. sensitive to θ_{23} octant degeneracy
 - ➢ interference .. sensitive to CP phase

→ high statistics of SK data enable us to probe it

Matter Effect for v_e , $\overline{v_e}$

- sensitive to mass hierarchy in case normal hierarchy → neutrino enhanced in case inverted hierarchy → antineutrino enhanced
- separation of neutrino/antineutrino in up-going e-like events (2~10GeV) has information of mass hierarchy
- It's not so easy, but differential cross-sections are different, biased samples (v_e -like, $\overline{v_e}$ -like) could be defined

Observables	v _e CC	$\overline{\nu_e}$ CC
Number of rings	More	Fewer
Transverse momentum	Larger	Smaller
# of decay electrons	More	Fewer
Signal efficiency	52.9%	71%
Purity	58.4%	27.5%

Mass Hierarchy

up-down asymmetry

- although low statistics and purity, data looks favoring normal hierarchy
- fitting result shown later

Oscillation Parameter Fitting

- 19 histograms based on topology, energy, flavor
- minimum χ² fitting on bins of zenith angle, energy
- with three types of constraints
 - \succ constraint on $\,\theta_{\,13}\,{\rm from}\,{\rm reactor}$
 - \succ no constraint on $\,\theta_{\,13}$
 - \succ constraints from T2K public result

Fitting Results with θ_{13} Constraint

SK-I to SK-IV, 5326 days (2519 days from SK-IV), 328 kt-yr

Comparison to Experiments

- consistent with experiments
- CL region mostly overlapped

CP Violation Phase ($\delta_{\rm CP}$)

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ev}^2,$ $\sin^2 \theta_{12} = 0.304 \pm 0.014,$ $\sin^2 \theta_{13} = 0.0219 \pm 0.012$

- best fit 4.18 (3.84)
- slightly suggest nonzero δ cp

Matter Effect

- consistent with standard matter model
- rejecting vacuum model by 1.6 σ

Fitting Results with θ_{13} free

- consistent reactor exp.=0.0219
- rejecting $\sin^2 \theta_{13} = 0$ in 2σ
- $\chi^2(NH-IH) = -3.5$, still favor normal hierarchy
- similar behavior (slightly weak)

Fitting results with T2K constraint

• δ_{CP} still favor ~4.9(4.5) with stronger constraint

Interpretation of Hierarchy Determination

- p-values calculated using pseudo-data
- Hypothesis test ~ CL_s method :

 $CL_{s}(IH rejection) \equiv \frac{p_{0(IH)}}{1-p_{0}(NH)}$

• sensitivity depend on $\sin^2 \theta_{23}$ taking smallest and largest $\sin^2 \theta_{23}$

IH rejection:

SK only	80.6 ~ 96.7%
SK + T2Kmodel	91.5 ~ 94.5%

Summary

- published atmospheric neutrino results with almost full (88%) data
- updated precise measurement of atmospheric parameter
- favored NH and non-zero $\,\delta_{\,\rm CP}$, although statistics is limited
- trying new reconstruction fitQun (the performance was shown on Wednesday)
- expanding fiducial volume ~ 20%?