Status of solar neutrino physics at SK

2018 September 21st (Fri)

European Workshop on Water Cherenkov Precision Detectors for Neutrino and Nucleon Decay Physics TMEX 2018 WCP @Warsaw, Poland

Yuuki Nakano for the Super-Kamiokande collaboration

(Kamioka Observatory, ICRR, The University of Tokyo)

Supported by Grant-in-Aid for Young Scientists (B) 17K17880

Contents

Solar neutrino measurement with water Cherenkov

- Solar neutrino
- Water Cherenkov detectors
- Solar neutrino interactions in water
- Brief summary of solar neutrino measurement

Latest results from Super-Kamiokande

- Solar neutrino flux measurements
- Energy spectrum
- Oscillation analysis

Summary

Solar neutrino

Production of solar neutrino

- Solar neutrinos are produced via nuclear fusions in the core.

 $4p \rightarrow \alpha + 2e^+ + 2\nu_e + 26.7 \mathrm{MeV} - E_{\nu}$

- Several processes produce electron-neutrino (v_e).
 - \rightarrow pp, pep, ⁷Be, ⁸B, hep and CNO
- Standard solar model (SSM) predicts their fluxes.

Water Cherenkov detectors

as solar neutrino detector

p. 4

Kamiokande Super- Kamiokande

Phys. Rev. D 38, 448 (1998).

H2O

Phys. Rev. C 75, 045502 (2007).

D20

p. 5 Solar neutrino interactions in water

Reaction channels

- 3 reactions (CC/NC/ES) are used in the water Cherenkov detector.

Channel	Reaction	Energy Threshold	Comment
Charged current (CC) (SNO)	$egin{aligned} & m{ u}_e + d \ & ightarrow e^- + p + p \end{aligned}$	1.4 MeV	Sensitive only to v_e \rightarrow pure v_e energy spectrum
Neutral current (NC) (SNO)	$ \begin{array}{l} \nu_X + d \\ \rightarrow \nu_X + p + n \end{array} $	2.2 MeV	Equally sensitive to all flavor but only to ⁸ Β ν → Total ⁸ B neutrino flux
Elastic scattering (ES) (SK & SNO)	$ \begin{array}{c} \nu_X + e^- \\ \rightarrow \nu_X + e^- \end{array} $		Sensitive to all flavor Small contribution of $v_{\mu/\tau}$ Cross section: $\sigma_{v_e} = (6 - 7) \times \sigma_{v_{\mu/\tau}}$

Physics from reactions above

- The total v_X flux and the v_e flux would be separately determined.
- The CC/NC ratio gives the survival probability of solar neutrino.
- This provides independent test of the *v*-oscillation hypothesis and the standard solar model (SSM).

Solar neutrino oscillation

Allowed oscillation parameters

- 4 possible oscillation solutions in 1990s.
- (1) LOW & LMA: No energy distortion, day/night flux difference.
- (2) SMA: Large energy distortion.
- (3) VAC: Energy distortion, seasonal variation.
- \rightarrow Energy spectrum, seasonal variation and day-night are key.

Kamiokande & SK-I

Kamiokande

- First real-time measurement of solar neutrino.
 - \rightarrow Signals really come from the Sun.
- Observed rate over the SSM: 0.46 ± 0.13 (stat.) ±0.08 (syst.).
- → Confirmation of the solar neutrino problem. Phys. Rev. Lett. 63, 16 (1989).

Super-Kamiokande

- Precise flux/energy spectrum measurement.
- \rightarrow No distortion in the energy spectrum.

SK-I results

Era of precise measurement

- SK data: No energy distortion, no significant zenith dependence and small day/night flux asymmetry.
- SK data excluded SMA, VAC and demonstrated no Just so².
- SK data preferred LMA (higher Δm^2_{21} region of large mixing).

Flavor conversion

SNO's flux measurements with SK

- The first evidence of the solar v oscillation was obtained by comparing SK ES with SNO CC (non-electron v component in ES).

SNO CC	v_e	$1.75\pm0.07(stat)^{+0.12}_{-0.11}(syst.)\pm0.05(thor.)\times10^{6}~cm^{-2}sec^{-1}$
SK ES	$oldsymbol{ u}_e+0.15ig(oldsymbol{v}_\mu+oldsymbol{ u}_ auig)$	2.39 ± 0.34 (stat.) $^{+0.15}_{-0.14}$ (syst.) $ imes 10^{6}$ cm ⁻² sec- ¹
Difference		$(0.57\pm0.17) imes10^{6}~{ m cm^{-2}sec^{-1}}$

- \rightarrow Clear evidence for non-zero ν_{μ}/ν_{τ} flux (flavor change, 3.3 σ).
- \rightarrow Either of the results alone could not provided the evidence.

Phys. Rev. Lett. 87, 071301 (2001).

Neutrino oscillation

Survival probability

- NC flux measurement is in good agreement with the prediction of the total ⁸B solar neutrino in SSM.

- The CC/NC ratio extracts survival probability: 0.317±0.016±0.009.

p. 11

The latest results from SK

Super-Kamiokande (SK)

- Detector
- Located at Kamioka Japan.
- 50 kton of ultra pure water tank.
 - 20-inch PMTs, 11,129 for ID (since SK-III).
 - 22.5 kton for analysis fiducial volume.
- Water Cherenkov light technique.

History of SK

- Long term operation since 1996 (~22 years).
- Total live time is more than 5,500 days.
- Refurbishment works toward SK-Gd have started since May 31st, 2018.

* Photo coverage [%], ** Recoil electron kinetic energy [MeV].

p. 13 Motivations of solar neutrino

Goal of solar neutrino measurement in SK

- (1) Test the transition of solar v oscillation btw vacuum and matter.
 - → Lowering threshold & reducing BG to test MSW up-turn.
- (2) Day-night flux asymmetry
 - → Regeneration of v_e due to the Earth's matter effect is expected. (~2.5 σ indication, update of this analysis is in progress).

⁸B solar neutrino measurement

⁸B solar neutrino signals

- Elastic scattering ($v_X + e^- \rightarrow v_X + e^-$).
 - (1) Timing → Vertex position & real-time measurement
 - (2) Ring pattern \rightarrow **Direction** of the incoming neutrino
 - (3) # of hit PMTs → Energy (~6 p.e./MeV)

~20 events/day in SK-IV (SK-I~IV 5695 days: ~93k events).

⁸B solar neutrino flux

Flux measurements

- SK has measured the ⁸B solar neutrino flux for 22 years.
 - → Fluxes are consistent within uncertainties among all SK phases.

SK ES flux/SNO NC flux	⁸ B solar ν flux assuming no oscillation [×10 ⁶ cm ⁻² sec ⁻¹]	
0.4432 \pm 0.0084 (stat.+syst.)	2.33 ± 0.04 (stat.+syst.)	

- Correlation of the flux with the solar activity
- Solar activity is strongly correlated with sunspot numbers.
- No correlation with the 11-years solar activity is observed.

Day-night flux asymmetry Updated from Phys. Rev. Lett. 112 (2014) 091805.

Flux measurement

- Regeneration of v_e in night.
 - → Higher flux in night.

 $A_{\rm DN} = \frac{\Psi_{\rm day} - \Psi_{\rm night}}{(\Psi_{\rm day} + \Psi_{\rm night})/2}$

- Regeneration depends on oscillation parameters.
- Update analysis is in progress.

SK-phase	Amplitude fit [%]	Straight calc. [%]
SK-I	-2.0 ± 1.8 ± 1.0	-2.1± 2.0 ± 1.3
SK-II	-4.3 ± 3.8 ± 1.0	$-5.5 \pm 4.2 \pm 3.7$
SK-III	$-4.2 \pm 2.7 \pm 0.7$	-5.9 ± 3.2 ± 1.3
SK-IV	$-3.6 \pm 1.6 \pm 0.6$	-4.9 ± 1.8 ± 1.4
Combined	$-3.3 \pm 1.0 \pm 0.5$ (3.0 σ from zero)	-4.1 ± 1.2 ± 0.8 (2.8 σ from zero)

Updated from Phys. Rev. Lett. 112 (2014) 091805.

p. 16

Δm_{21}^2 vs Day/Night Asymmetry^{p. 17}

p. 18 Recoil electron energy spectrum

Combined spectrum

Energy spectrum vs. MSW predictions

- Introduce quadratic function to test the MSW prediction.
- Quadratic fit is consistent with solar Δm_{21}^2 within 1.2 σ , while it disfavors KamLAND Δm_{21}^2 by 2.0 σ .

SK I/II/III/IV LMA Spectrum

p. 20 Allowed survival probability

- Comparison among solar neutrino experiments
- Neutrino energy spectrum is de-convoluted from the recoil electron energy spectrum → Extract survival probability (*Pee*).
- This analysis gives the strongest constraint on *Pee* shape.

Global oscillation analysis input^{p.21}

Super-Kamiokande

Phase	Livetime [days]	Recoil electron spectrum	Day/Night
SK-I	1496	4.5-19.5 MeV	Above 4.5 MeV
SK-II	791	6.5-19.5 MeV	Above 7.0 MeV
SK-III	548	4.0-19.5 MeV	Above 4.5 MeV
SK-IV	2860	3.5-19.5 MeV (Updated: Phys. Rev. D 94, 052010 (2016))	Above 4.5 MeV (1664 days) (Phys. Rev. Lett. 112, 091805 (2014))

SNO

- Three phases combined: Phys. Rev. C 88, 025501 (2013).
- Radiochemical (Ga, Cl)
 - Ga rate: 66.1±3.1 SNU, Phys. Rev. C 80, 015807 (2009).
 - Cl rate: 2.56±0.23 SNU, Astrophys. J. 496, 505 (1998).
- Borexino
 - ⁷Be flux: arXiv:1707.09279. (Phase-II result)
- KamLAND
 - 3 flavor analysis: Phys. Rev. D 88, 033001 (2013).
- ⁸B spectrum
 - Winter spectrum: Phys. Rev. C 73, 025503 (2006).

Constraint on $\sin^2 \theta_{12}$, Δm^2_{21} (solar vs. KamLAND)

p. 22

Summary

- Last 20 years, water Cherenkov detectors (Kamiokande/SK/SNO) contribute to the solar neutrino measurement.
 - \rightarrow Determined the total ⁸B solar neutrino flux.
 - \rightarrow Found flavor conversion of solar neutrino.
- Solar neutrino results from SK
 - **Solar neutrino flux measurements:**
 - → Elastic scattering rate: 2.33 ± 0.04 (stat.+syst.) × 10⁶ cm⁻²sec⁻¹.
 - \rightarrow ⁸B v flux has no significant correlation with the solar activity.
 - Recoil electron energy spectrum:
 - \rightarrow Achieved at the lowest energy threshold: 3.5 MeV.
 - → SK+SNO spectrum shape gives strong constraint on *Pee* shape.
 - Oscillation parameters:
 - $\rightarrow \sin^2 \theta_{12} = 0.310 \pm 0.012$, $\Delta m_{21}^2 = 7.49^{+0.19}_{-0.17} \times 10^{-5} \text{ eV}^2$.
 - $\rightarrow 2\sigma$ tensition in Δm_{21}^2 between the solar global and KamLAND.