Theory Meeting Experiment – European Workshop on Water Cherenkov Precision Detectors for Neutrino and Nucleon Decay Physics, 19 – 21 September 2018, Warsaw, PL

Dark Matter Searches at Super-Kamiokande

Piotr Mijakowski

tmerwcp2018

National Centre For Nuclear Research Warsaw, Poland

OUTLINE

Indirect dark matter searches at Super-Kamiokande Galactic WIMP search ON/OFF-source analysis (2016) Galactic WIMP search Global Fit analysis (2017) Solar WIMP search Global Fit analysis (2015) • Earth WIMP search Global Fit analysis (2017/18)

(non-scientific) WIMP searches

.....

Google

wimp dark matter

wimp dark matter wimp dark matter **review** wimp dark matter **direct-detection searches in noble gases wimps** dark matter **wikipedia** wimp dark matter **candidates** wimp **macho** dark matter

\$127.98 per 40 servings on ebay

Available in 3 flavors: Blue Raspberry, Fruit Punch and Grape....

(scientific) WIMP searches

 χ : Dark Matter particle

Super-Kamiokande

@ Kamioka Observatory (ICRR, University of Tokyo), Japan

located 1km underground

40m

- 50 kton of pure water (22.5 kton FV)
- inner (ID) & outer/veto (OD) detection regions

PMT

- SK runs from 1996
- measures solar, atmospheric, cosmic & accelerator neutrinos
- T.Kajita → Nobel Prize 2015

Detected Cherenkov light allows for reconstruction of:

- lepton momentum (neutrino energy)
- lepton direction

• lepton flavor (e-like vs. µ-like, good separation possible)

Atmospheric neutrinos: main background in DM-induced v searches

atmospheric neutrinos at SK

- ~10 events/day
- data period: 1996-2016
- ~50 000 events in total

Galactic WIMP search

ON-/OFF-source analysis (K.Frankiewicz)

Galactic WIMP search

 diffuse signal from entire Galaxy, peaked from Galactic Center

- GC visibility with SK:
 ~71% with UPMU, 100% FC/PC
- search constrains DM selfannihilation cross section <σV>

Detector

Expected signal intensity strongly depends on halo model NFW is considered as a benchmark model

DM annihilation or decay

Galactic WIMP search: ON-/OFF-source

Analysis by K. Frankiewicz

Search for large-scale anisotropy due to DM-induced $\nu \mbox{'s}$ from Milky Way

expectation for DMinduced neutrinos

- Analysis uses ON-/OFF-source concept to estimate background directly from data
- Independent on MC simulations and related systematic uncertainties

ON-/OFF-source results

DATA is consistent with background, no asymmetry in neutrino flux observed

ON-source

OFF-source

ON-/OFF-source results

90% CL upper limits on dark matter self-annihilation cross-section + halo model choice impact

- Intensity factors for halo profiles differs orders of magnitude →
- Comparison of these limit with other experimental results on the next slides

Galactic WIMP search

Global Fit analysis (P.Mijakowski)

Global Fit method: DM searches at Super-K

- Search for excess of neutrinos form Earth/Sun/Milky Way
- **FIT:** for each tested WIMP mass & ann. mode, find

configuration of ATM V + DM signal that would match DATA the best using reconstructed angular & momentum distributions

$$\chi\chi \rightarrow \nu\overline{\nu}, W^+W^-, b\overline{b}, \mu^+\mu^- \rightarrow ...\nu_{e/\mu/\tau}$$

Detector

lepton direction $\theta_{\rm GC}$, $\theta_{\rm sun}$ or $\theta_{\rm zenith}$

Galactic WIMP search: data

example: 5GeV WIMPs bb ann. channel

- FIT based on lepton mom.
 & cosθ_{GC} distributions,
 5326-5629 livedays,1996-2016
- NFW halo model assumed
- Fit results are consistent with null WIMP contribution
- 90% CL upper
 limit on DM self annihilation cross [™]
 section <σ_AV>

proportions of the signal in various samples are reflected

before fit

Galactic WIMP search: fitted number of DM-induced v's

- FIT based on lepton mom.
 & cosθ_{GC} distributions,
 5326-5629 livedays,1996-2016
- NFW halo model assumed
- Fit results are consistent with null WIMP contribution
- 90% CL upper limit on DM selfannihilation cross section <σ_AV>

~150 systematic uncertainty terms included in the fit **p-values in backup**

Galactic WIMP search: DM self-annihilation cross section

Galactic WIMP searches comparison

 Global Fit analysis yields ~1 order of magnitude stronger constraints than ON-/OFFsource

 If positron excess seen by AMS-02 and others is due to leptohilic DM annihilation into μ+μ- then we can probe the favored phase-space regions

FIGURE 12.1: Favored regions obtained by interpreting the observed positron and electron excesses as due to dark matter annihilation in $\mu^+\mu^-$. Green region is favored by PAMELA (at 3σ), red region is favored by the global fit of FERMI, HESS and PAMELA data (at 3σ) (Meade et al., 2010), and blue region is favored by AMS-02 data (at 2σ) (Di Mauro et al., 2016). The 90% C.L. limits from SK data are plotted with solid purple line for "ON-OFF souce" analysis (this thesis), and with solid line for "Global fit" approach (Mijakowski, 2018). NFW halo model is assumed in all cases.

Solar WIMP search

Global Fit analysis (K. Choi)

Solar WIMP search

• DM particles passing through the Sun can elastically scatter with nuclei and loose energy

WIMP density increases in core, leading to DM annihilation until equilibrium is achieved:
 capture rate = annihilation rate

• Scattering cross section $\sigma_{\chi n}$ can be constrained and compared with results from direct DM detection

more: G.Wikström, J.Edsjö JCAP 04, 009 (2009)

Published: K.Choi et al., Phys. Rev. Lett. 114, 141301 (2015)

detector

Solar WIMP search

- FIT based on lepton mom. & cosθ_{SUN} distributions, 3903 days of SK data (1996-2012)
- No excess of v's from the SUN as compared to atm bkg
- 90% CL upper limit on WIMP-nucleon scattering cross section σ_{xn} for $\tau^+\tau^-$, bb and W⁺W⁻ channels

example for: 200 GeV WIMPs, $\tau^+\tau^-$ ann. channel

P.Mijakowski

Solar WIMP search: WIMP-nucleon SI & SD cross section limit

90% CL upper limit

published: K.Choi et al., Phys. Rev. Lett. 114, 141301 (2015)

Earth WIMP search

Global Fit analysis (K.Frankiewicz)

Earth WIMP search

- Spin-independent interactions dominate in the capturing process → scalar interaction in which WIMPs couple to the nucleus mass
- If the mass of DM matches given heavy element, the capture rate increases considerably

WIMP caputure rate in the Earth

The peaks correspond to **resonant capture** on the most abundant elements ¹⁶O, ²⁴Mg, ²⁸Si and ⁵⁶Fe and their isotopes

WIMP-nucleon SI scattering cross section $\sigma_{\chi-N}$ can be constrained and compared with results from direct DM detection.

Earth WIMP search: data fit

SK preliminary

 FIT based on lepton mom. & cosθ_{zenith} distributions, 5326-5629 livedays,1996-2016

- Fit results are consistent with null WIMP contribution
- 90 % upper limits on SI WIMPnucleon scattering cross $\frac{2}{2}$ section $\sigma_{\chi-n}$

example: 25GeV WIMPs τ⁺τ⁻ ann. channel

proportions of the signal in various samples are reflected

before fit

Earth WIMP search: fitted number of DM-induced Vs

Analysis by K. Frankiewicz

- FIT based on lepton mom.
 & cosθ_{zenith} distributions,
 5326-5629 livedays,1996-2016
- Fit results are consistent with null WIMP contribution
- 90 % upper limits on SI WIMPnucleon scattering cross section σ_{χ-n}

P.Mijakowski

Earth WIMP search: fitted number of DM-induced v_s

Analysis by K. Frankiewicz

- FIT based on lepton mom. & cosθ_{zenith} distributions, 5326-5629 livedays,1996-2016
- Fit results are consistent with null WIMP contribution
- 90 % upper limits on SI WIMPnucleon scattering cross section $\sigma_{\chi-n}$

Earth WIMP search: wIMP-nucleon SI cross-section limit

Analysis by K. Frankiewicz

- FIT based on lepton mom.
 & cosθ_{zenith} distributions,
 5326-5629 livedays,1996-2016
- Fit results are consistent with null WIMP contribution

90 % upper limits on SI WIMPnucleon scattering cross section σ_{χ -n

best limit among neutrino telescopes!

Summary

- DM induced neutrinos has not been observed at Super-Kamiokande so far
- Galactic WIMP search (2017)
 - upper limits on $\langle \sigma_A V \rangle$ for wide range of WIMPs masses (1 GeV to 10 TeV)
 - strongest limits < 20-100GeV among v experiments
- Solar WIMP search (2015)
 - strongest limits < 20-100GeV among ν experiments, published PRL.114, 141301 (2015)
- Earth WIMP search (2017)
 - upper limits on spin-independent WIMP-nucleon cross-section
 - high sensitivity to resonant capture region → currently the strongest limits from v experiments
 - PhD of K.Frankiewicz, paper in preparation, target PRL

Horizon 2020 European Union funding for Research & Innovation

SONATA-BIS 2015/18/E/ST2/00758 PRELUDIUM 2015/17/N/ST2/04064

H2020-MSCA-RISE-2014-GA641540, SKPLUS (SK+)

supplementary slides

Dark Matter

Dark Matter Candidates

Well motivated:

- neutrino 'hot' DM
- WIMP
- neutralino χ
- gravitino G
- axion a
- axino ã

WIMP (Weakly Interacting Massive Particle)

still main

candidate

- neutral
- long livetime
- massive (GeV TeV)
- weekly interacting with matter
- Good WIMP candidate from SUSY \rightarrow LSP

neutralino χ

$$\tilde{\chi} = a_1 \tilde{\gamma} + a_2 \tilde{Z} + a_3 \tilde{H}_1 + a_4 \tilde{H}_2$$

Signal simulation

Simulate DM signal before detection → DarkSUSY & WimpSim

P. Gondolo et al., JCAP 07, 008 (2004) M. Blennow et al., arXiv: 0709.3898 (2008)

EXAMPLE: Earth WIMP search

muon neutrino flux produced in WIMP annihilation in the Earth's core

Earth WIMP search: signal simulation

Simulate DM signal before detection \rightarrow DarkSUSY & WimpSim

P. Gondolo et al., JCAP 07, 008 (2004) M. Blennow et al., arXiv: 0709.3898 (2008)

EXAMPLES

muon neutrino flux produced in WIMP annihilation in the Earth's core

- Energy spectra and angular distribution for each neutrino flavor are calculated for given annihilation channel and assumed WIMP mass
- 3-flavor ν oscillations and interactions included

Galactic WIMP search: p-value's

Galactic WIMP search: signal Ilustration 5GeV bb-bar

Galactic WIMP search: signal Ilustration 10GeV bb-bar

Galactic WIMP search: signal Ilustration 100GeV bb-bar

Galactic WIMP search: signal Ilustration 1000GeV bb-bar

Future: Hyper-Kamiokande

- start 2026 (after 7 years construction)
- main goal: neutrino mass hierarchy and δCP
- some astro potential: SN, DSNB (~2evts per day), WIMPs, cosmic neutrinos

Proton Decay

~10 x Super-K fiducial mass

Total mass 260 kton Fiducial 190 kton

Tank filled with pure water 74m (D) x 60m (H) 40,000 new photo-sensor w/ double sensitivity

Hyper-

Kamiokande

Future: Hyper-Kamiokande

- start 2026 (after 7 years construction)
- main goal: neutrino mass hierarchy and δCP
- some astro potential: SN, DSNB (~2evts per day), WIMPs, cosmic neutrinos

Galactic WIMP search sensitivity ~3-10x improvement after 20 yrs of Hyper-Kamiokande running

Sun & Earth WIMP searches: similar level of improvement is expected

Prospects at KM3NeT

Strong limits from Antares (0.01km³, 12 strings) \rightarrow great potential of KM3NeT (0.1 \rightarrow ~1km³, 230 strings)

Super-K: 0.45 Mton•yrs (current limit) Hyper-K: 3-10x improvement in 20 yrs ORCA: 3-10x imprv. in ~ 1 yr (wrt. SK) ARCA-2 blocks: 30-10²x imprv. in ~ 1yr