21-Sep-2018 @TMEX2018WCP

<u>SUPERNOVA PHYSICS</u> WITH SK / SK-GD / HK

Yasuo Takeuchi (Kobe University)

Hyper-Kamiokande

Inside of SK detector during refurbishment work (July 15, 2018)

<u>Super-Kamiokande(SK) / SK-Gd</u>

Next step: SK-Gd Phase

Add gadolinium (Gd) to enhance neutron tagging efficiency of the SK detector.

Physics targets:

- Detect the world's first supernova relic neutrinos (SRN or DSNB)
- Improve pointing accuracy for supernova
- Early warning of nearby supernova from pre-burst signal
- Enhance v or anti-v discrimination in atm. v & T2K analysis
- Reduce backgrounds in proton decay search

SK refurbishment is ongoing since June 2018

- Fix water leakage
- Replace dead PMTs
- Improve water piping in the SK detector

Current schedule:

- Jun. ~ Dec. 2018: refurbishment & water filling
- Jan. 2019 ~: pure water run
- 20XX(T₁): add 0.02% of Gd₂(SO₄)₃ (50% eff.)
- 20XX(T₂): add 0.2% of Gd₂(SO₄)₃ (90% eff.)
 First possible T₁ is late 2019 (will be decided w/ T2K)

Inner detector during refurbishment July 15, 2018 (around half water level)

Hyper-Kamiokande (HK)

- Gigantic neutrino and nucleon decay detector in Kamioka, Japan
 187 kton fiducial mass: ~10 x SK
 x 2 higher photon sensitivity than SK
- MW-class world-leading v-beam by upgraded J-PARC

Design Report 2018: arXiv:1805.04163

Physics targets: Nucleon decay search Neutrino oscillation study Astrophysical neutrino search

Current status:

- HK is a priority project by MEXT's Roadmap 2017
- MEXT decided to request a seed budget of HK in FY2019. (In SK, after the one-year seed budget, full budget was allocated)
- U. Tokyo decided to start HK constriction in April 2020.
- To enhance neutrino oscillation physics, a 2nd detector in Korea is under study

Supernova burst neutrinos

Supernova burst neutrinos

SN burst v was observed from SN1987A.

- KAMIOKANDE-II (2.1 kton): 11 events / 13 sec.
- @LMC (~50 kpc)
- Consistent with standard core-collapse scenario.
 - Total energy in v : 2.2x10⁵³ erg. (Astropart. Phys. 31 (2009) 163-176)
- To study explosion models in detail, more v are necessary.
- A galactic SN burst (at 10 kpc) will provides:
 - SK / SK-Gd (32 kt): ~10,000 events (E_{e, kinetic} > 4.5 MeV) HK (0.22 Mt): ~70,000 events
 - Livermore simulation (ApJ. 496, 216 (1998)), normal mass hierarchy (NH) neutrino oscillation
 - Nakazato simulation (ApJ. Suppl. 205:2 (2013)): ~50% less flux
 - Detail discussions of explosion models would be possible

A real-time burst monitor is implemented at SK

• burst alarm \rightarrow discussion \rightarrow send announcements (< 1hour)

Real-time SN burst monitor at SK

Expected supernova burst v at HK:1

Design Report 2018: arXiv:1805.04163

Precise measurement of time & energy profile is important → Dynamics of SN central engine, explosion mechanism, neutron star / black hole (BH) formation, ...

FIG. 181. Time profiles of the observed inverse beta decay event rate (left) and mean energy of these events, predicted by supernova simulations [250, 253–258] for the first 0.3 seconds after the onset of a 10 kpc distant burst with Hyper-K 1 tank.

Expected supernova burst v at HK:2

Design Report 2018: arXiv:1805.04163

- 52-79 k events / SN at 10 kpc (in 0.22 Mt)
 - ~10 events / SN in Andromeda galaxy (M31)
- Time profile would depend on v oscillation and v mass hierarchy, however the actual v behavior during SN burst is not obvious due to possible other effects (matter effect, collective effect (PRL97, 241101 (2006)), ...)
 - Cf. Livermore simulation (ApJ. 496, 216 (1998))

Expected supernova burst v at HK:3

Design Report 2018: arXiv:1805.04163

- Detection rate modulations could be observed
 - ~3% level SASI (Standing Accretion Shock Instability) could be detected from 90% of a galactic SN (PRL 111, 121104 (2013))
 - A rotating supernova explosion model (MNRAS 475, (2018) 91-95)

Supernova burst v: Multi messenger performance

Multi messenger performance:

HK: ~1 degree (opening angle) determination of direction of SN at 10 kpc

MNRAS 461 (2016) 3296-3313

Figure 9. Detection prospects and strategies of the plateau signal of Galactic CCSNe. The top histogram shows the dust-attenuated plateau magnitudes with their respective percentage of the total CCSNe; 1.2% and 24.5% fall beyond the magnitude range shown. The optical magnitudes of the SBO emission are also similar to the plateau magnitudes (the SBO emission is likely to be fainter by about 1 mag, Tominaga et al. 2011). The bottom panel shows the typical magnitude ranges and fields of view (FOV) of various optical telescopes: ASAS-SN, Blanco, CFHT, Evryscope, LSST, Pan-STARRS, Subaru, and ZTF (shaded rectangles), as well as the naked eye (left-pointing arrow). See text for details. The error circle in CCSN pointing from the CCSN neutrino burst, for Super-K with and without Gadolinium, are represented by the horizontal dashed lines and labeled.

Better angular resolution would help optical telescope's multi messenger observations

SK-Gd: Supernova burst neutrinos

13

SK-Gd: Supernova burst neutrinos

Supernova relic neutrinos

<u>Supernova relic neutrinos</u>

- Supernova relic neutrino (SRN) or Diffuse supernova neutrino background (DSNB)
- Accumulation of past SN bursts
- Spectrum depends on the time of the burst
 - Early time → larger red shift
 → low temperature
 - History of star/Black hole (BH) formation could be studied
- SK-Gd is expected to discover SRN
- HK is expected to measure energy spectrum

SRN analysis in SK-I~III

JPER

efficiencies).

Number of events

number of events

Current SRN upper limits

Expected SRN signal & BG in HK

SRN flux: S. Ando et. al, Astropart. Phys. 18 (2003) 307-432, NNN05, T_{eff} = 6 MeV HK Design Report 2018: arXiv:1805.04163

~70 events / 16-30 MeV / 10 year (without Gd, n-tag eff. ~70% (w/ proton), lower signal efficiency due to spallation cut, especially in 16-18 MeV, etc.)
 ~280 events / 10-30 MeV / 10 year (with Gd option, only n-tag eff. ~70%)

Expected SRN sensitivity in SK-Gd

Expected SRN events in SK-Gd, 10 years

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T _{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

Expected SRN observation in HK

Goal of HK: measure energy spectrum of SRN

- Study history of star formation / black hole (BH) formation
- Expected 70+/-17 events in HK 10 years, in 16-30 MeV (4 σ to non-zero)
 - **5** years (15 years) \rightarrow 3 σ (5 σ)

Summary

- Measurement of a galactic supernova burst with SK/SK-Gd/HK will provide us a lot of information.
 - SK/SK-Gd: ~10,000 events / SN at 10 kpc
 - **HK: ~70,000 events / SN at 10 kpc**
- A real-time burst monitor is implemented in SK, and a quick announcement will be done.
 - Pointing accuracy: SK/SK-Gd: 3~5 deg., HK: ~1 deg.
- The main physics target in SK-Gd phase is the first observation of SRN/DSNB.
 - **Expected: SK-Gd: 10~30 events / 10-28 MeV / 10 year**
- A goal at HK is to measure SRN/DSNB spectrum
 Expected: HK: ~70 events / 16-30 MeV / 10 year