#### Astrophysical Neutrinos and New Physics with Water Cherenokov detectors





#### Kenny, Chun Yu Ng (吳震宇) Weizmann Institute of Science



Kenny C.Y. NG, TMEX2018, Warsaw

## **Neutrinos Astro-particle physics**

----- Particle Astro

- Reveal concealed astrophysical sites
  - Solar, Supernova





- -AGN
- Ideal messenger
- **Cosmic hadron accelerator** 100 year CR problem

Neutrino mass



- Dirac mass, why so small? -> Sterile neutrino!
  - Majorana mass?
- Both?
- New physics portals? ightarrow
  - Dark matter
  - Secret interactions

#### Supernova Neutrinos



### Galactic Supernova

• SN1987A





Vissani 2015

#### Blum Kushnir 2016

Kenny C.Y. NG, TMEX2018, Warsaw

## Galactic Supernova

Tamborra+2013

#### IceCube



# Halzen Raffelt 2009 Bounce time ± 3.5ms -> GW





# Nearby Supernova

Can we see nearby supernova?

– Local Overdensity?

- 1/year <6Mpc</li>
- Singles (+ optical)
   30%

- 10 years
  - 1- P(no det.) > 97%!





## Diffuse supernova neutrino background

#### Average neutrino emission

- Use >100 simulations to characterize progenitor dependence of neutrinos
- Include collapse to black holes, characterized by critical compactness

**Event rate predictions** Hyper-K sensitive to small compactness  $(\xi_{2.5} < 0.2, \text{ or } f_{BH} > 0.2)$ 



reviews by Beacom (2010), Lunardini (2010) Shunsaku Horiuchi (VT CNP)

Horiuchi et al (2018); see also Lunardini (2009), Lien et al (2010), Moller et al (2018)

#### **Astrophysical Neutrinos**



# **Diffuse Astrophysical Neutrinos**

- IceCube HESE and  $v_{\mu}$
- $E^{-2.2}$  vs  $E^{-2.9}$  ?
- Two components?





- Source cannot be rare and bright
- Or maybe hidden?

#### 9/21/18

#### Kenny C.Y. NG, TMEX2018, Warsaw

### **Multi-messenger Connection**



#### Ahlers, Halzen 2018

### Where are the Taus?







- Double Bang
- Double Pulse



IceCube 2015 3 years

#### Point source astrophysical Neutrinos Era of multimessenger astronomy with TXS events original GCN Notice Fri 22 Sep 17 20:55:13 UT refined best-fit direction IC170922A IC170922A 50% - area: 0.15 square degrees Blazar as a hadronic accelerator! IC170922A 90% - area: 0.97 square degrees Association ~3 sigma TXS 050 Neutrino flare ~3.5 sigma PKS 0502+049 3FHL 3FGL Need more of these! IC40IC59IC79IC86b IC86c IC86a IceCube-170922A $4\sigma$ 4 Gaussian Analysis Box-shaped Analysis 3



## Sun – Cosmic-ray beam dump

Seckel, Stanev, Gaisser (1991), Moskalenko, Karakula (1993), Ingelman, Thunman (1996), + Low density atmosphere

- -> long interaction length
- -> more decays
- -> Higher flux, higher energy

#### CR protons

## Neutrino Flux

- Showers:  $v_{e,\tau}CC$ ,  $v_XNC$
- Tracks:  $\nu_{\mu}CC$
- $v_{\mu}CC$  for directionality - kinematic angle
- Above ~3 TeV, greater than Earth ATM background
- Unclear how solar magnetic fields change the prediction





## SAv as a Signal

- Muon (>1TeV)
  - Energy resolution via energy loss
- ~ 5 signal events in 10 years (4 bkg)
- Another
- 1<sup>st</sup> high-energy neutrino source?

 Common source for IceCube + KM3NeT



# Solar Atmospheric gamma rays



Neutrinos could help understand the gamma rays Tang et al 2018

- Time variation
- Hard spectrum
- Large flux

### Dark Matter and New physics



#### Dark Matter

Weakly Interacting Massive Particles (WIMPs)



### **Dark Matter Annihilation**



#### Antiproton, Reinert & Winkler 2018

#### Gamma rays, Fermi collab. 2017



• Specific channels or models

# The simplest WIMP hypothesis

- Total cross section constraint
  - Arbitrary, mixed channel (mixed spectrum)
  - Fermi dwarf, AMS positron,
    Planck CMB
- New physics for large xsec
- Sub DM thermal relics.
- All visible channels except Neutrinos!

Leane, Slatyer, Beacom, KCYN, 2018



## Neutrino Channel



Mijakowski TAUP 2017

- Reaching thermal?
  - A significant milestone for testing WIMPs

#### Dark Matter

• Weakly Interacting Massive Particles



1:

### Dark Matter Search from the Sun

Rott, NOW 2018



#### Solar ATM neutrino – indirect detection Neutrino Floor



No B-field effect are considered

IceCube Search ongoing [S. In & C. Rott ICRC17 (965)]

KCYN, Beacom, Peter, Rott, 1703.10280 See also Arguelles+ 1703.07798 Edsjo+ 1704.02892

#### Dark Matter with long-lived mediators

Leane, KCYN, Beacom 1703.04629

No neutrino absorption 10<sup>-37</sup> + EM signatures! 10<sup>-38</sup> 10<sup>-39</sup> 10<sup>-40</sup>  $cm^2$ 10<sup>-41</sup> ANT(2016) Lona-li  $\frac{1}{0} \frac{1}{0} \frac{1}{2} \frac{1}$ 10<sup>-43</sup>  $\chi \chi \to \text{mediators}$ 10<sup>-44</sup> 10<sup>-45</sup> 10<sup>-46</sup>  $10^{0}$ 10<sup>1</sup>  $10^{3}$ 10<sup>5</sup> 10<sup>6</sup>  $10^{2}$  $10^{4}$  $m_{\chi}$  [ GeV ]

### **Dark Matter Decay**

Cohen, Murase, Rodd, Safdi, Soreq 2017



#### IceCube Boosted Dark Matter

Following search proposed by Kopp, Liu, Wan (2015)

using "Echo Technique" Li, Bustamante, Beacom (2016)



May sound crazy, but is just an example for exotic interactions in IceCube detectable via recoil

see also A. Steuer, L. Koepke [IceCube] PoS(ICRC2017)1008

 $10^{8}$ 

 $10^{7}$ 

 $10^{6}$ 

10<sup>5</sup>

 $10^{4}$ 

 $dL/dlog_{10}t$  [arb. units]

prompt shower

> muon decay echo

neutron

capture echo



C. Kachulis et al [Super-K] Phys.Rev.Lett. 120 (2018) no.22, 221301 [arXiv:1711.05278]

#### Super-K Boosted Dark Matter



September 9-16, 2018

#### Cosmic neutrino cascades



30

### Neutrino Dark Matter Interaction





#### Argu<sup>e</sup>elles, Kheirandish, Vincent, 2017

### Dark Matter Beam (T2K)



deNiverville et al, 2017

### Summary

• Rich astroparticle phyiscs, many can only be done with water Cherenkov detectors

 Exciting times ahead for new detectors and maybe new techniques



### Backup slides



## Solar Atmospheric Neutrino Floor

• Large direct detection experiments are needed to reach  $10^{-44}$  cm<sup>2</sup>



Kenny C.Y. NG, TMEX2018, Warsaw