SK/SK-Gd water system

2018 September 20th (Thu)

European Workshop on Water Cherenkov Precision Detectors for Neutrino and Nucleon Decay Physics TMEX 2018 WCP @Warsaw, Poland

Yuuki Nakano for the Super-Kamiokande collaboration (Kamioka Observatory, ICRR, The University of Tokyo)

Supported by Grant-in-Aid for Young Scientists (B) 17K17880

Contents

- Water system for SK
 - Introduction
 - System
 - Performance
 - → BG control
 - → Calibration related
- Water system for SK-Gd
 - Introduction
 - System
 - Plan for SK-Gd

Summary

Introduction

- Water in Super-Kamiokande
- Purity of water in SK is essential for the detector performance.
 - \rightarrow Interactions are occurred only with water.
 - \rightarrow Cherenkov light travels through water.
- Understanding water properties is required.

Requirements

Goal of our study

- (1) Lead precise measurements.
 - \rightarrow Precise determination of energy.
 - \rightarrow High resolution for the reconstructions: position, direction.
- (2) Achieve low background environment in the detector.
- (3) Reduce the uncertainties.

Requirements to achieve above

- Understanding the water quality in detail:
 - \rightarrow Uniformity of the water quality in the whole tank.
 - → Stability of the water temperature.
 - → **Modeling absorption**/scattering/reflection of photon.
 - → **Control of background**, such as ²²²Rn daughters.

p. 5

Water system for SK

p. 6 Design of the current water system

Overview

- Raw mine water is drained.
- Removing several contaminations.
- Recirculating at rate about 60 ton/hour.

P. 7 Water system and its performance

Main components

ltem	Targets	Comment
Micro meter filter	Dust (>1.0 μm)	Series of mesh filter
Ion Exchanger	High molecular Heavy metal	Resin Remove ions in water (Na ⁺ , Cl ⁻ , Ca ²⁺)
UV sterilizer	Bacterias	Radiate ultraviolet light to kill bacterias survive in water
Reverse Osmosis	>1000 molecular	
Vacuum Degasifier	Oxygen, Radon	
Nano meter filter	Dust (>10 nm)	
Membrane degasifier	Radon	
Heat exchanger	Heat	Control water temperature with an accuracy of 0.01°C.

- Resistivity becomes 18.24 MΩ.
- Water temperature of the supply water is controlled at 13.06°C.

^{p. 8} Water temperature in the tank

Temperature control

- Supply water is controlled at 13.06°C with the heat exchanger.
- Water is basically supplied (drained) from the bottom (top).
- Below z=-11m, convection due to the constant temperature.
- Above z=-11m, water temperature gradually increases.
 - \rightarrow Water flows from the bottom to the top.

BG control in the water tank

Radon concentration

- Due to the convection, radon is located at the bottom region.
 - \rightarrow Successfully reduce radon background in the center region.

Position	Center region	Bottom region
Rn concentration	0.34±0.06 mBq/m³	2.80±0.48 mBq/m ³

J. Phys. Conf. Ser. 888, 012191 (2017). - Background for solar neutrino is 3-4 times lowered than SK-I.

p. 10 BG control in the water tank

Radon concentration

- Due to the convection, radon is located at the bottom region.
 - \rightarrow Successfully reduce radon background in the center region.

Position	Center region	Bottom region
Rn concentration	0.34±0.06 mBq/m³	2.80±0.48 mBq/m ³

J. Phys. Conf. Ser. 888, 012191 (2017). - Background for solar neutrino is 3-4 times lowered than SK-I.

Attenuation length (1)

- Component of attenuation
 - Light attenuation occurs by absorption and scattering.
 - \rightarrow Rayleigh scattering and Mie scattering.
- Modeling with empirical function:

(does not represent real physical properties)

Nucl. Instrum. Meth, A 737, 253-272 (2017).

Timing distribution (TOF subtracted)

Attenuation length (2)

Modeling of water

- Using calibration data, parameters are determined.
 - \rightarrow These parameters are used in the MC simulation in SK.
- Asymmetric is relatively stable for every wave length,

while others have large time dependence (correlated with purity).

Top-bottom asymmetry

p. 13

- Uniformity of response
- Water pattern in the tank may affect the detector performance.
- → Monitoring the hit probability of PMTs: with Xe-light source (every 1 second). with Ni-Cf calibration source (Monthly).
- → 5% level of difference is observed with two calibration sources. (Attenuation length in the bottom is better).

p. 14

Water system for SK-Gd

p. 15

Why Gadolinium (Gd)

Neutron tagging

- N-tagging on hydrogen (free proton) is only ~18% efficient in SK.
 - \rightarrow Because of small energy of γ -ray (2.2 MeV).
- Gd has a large thermal-neutron cross section.
 - \rightarrow Possible to identify $\overline{\nu}_e$ interaction with delayed coincidence.
 - \rightarrow Large background reduction is expected for $\overline{\nu}_e + p \rightarrow e^+ + n$.

Requirements for SK-Gd

From SK to SK-Gd

- (1) Environmental safety.
- (2) Minimize negative impacts to current physics program.
- (3) Further physics potential with Gadolinium.

Requirements for SK-Gd

- Stopping the water leakage.
 - \rightarrow Currently, we try to fix it during the refurbishment work.
- Reduce background from radioactive impurities in Gd₂(SO4)3. → Next talk given by Prof. Luis Labarga.
- Monitoring water quality and Gd concentration.
 - \rightarrow Test tank (EGADS) is used for these demonstrations.
- Design/construction of the new water system.

EGADS detector (test tank)

Evaluating Gadolinium's Action on Detector System (EGADS)

- Test tank using actual detector materials.
- Study for Gd-water (quality/concentration monitoring).
- → Main tank (200 m³), Circulation system and 15 m³ tank for dissolving Gd.

p. 17

Monitoring results

Monitoring results

After 3 years operation

Very clean (no damage to the detector)

Water system for SK-Gd

- Location and Design
- System for dissolving Gd is newly constructed.
- Main upgrade
 - Powder transportation system.
 - \rightarrow Dissolving Gd-sulfate.
 - Pretreatment system.
 - \rightarrow Mixed with pure water (High Gd concentration).
- Fast circulation system (bandpass system).
 - \rightarrow Get target Gd concentration (0.02% and 0.2%).

Water system for SK-Gd

Construction

- Experimental area has been excavated since 2015.
- Construction work has started since October 2016.

p. 23 Time table for SK-Gd project

Tank refurbish work and future plan

- Refurbish work has started since May 31st.
 - → For water leakage fixing & replacement of broken PMTs
- Dissolving Gd into SK is expected in late 2019 (earliest case).

Summary

- Purity of water is essential for detector performance.
- → Precise measurement, low background....
- Super-Kamiokande's water system successfully produces the highest purified water.
- The properties of pure water are well studied:
 (1) Water temperature is well monitored.
 - \rightarrow This helps to control radon background in the tank.
 - (2) Detector response are understood with several calibrations.
- For SK-Gd, several studies has been made:
 - (1) Demonstrate the stability of water quality with Gadlinium.
 - (2) No damage for the test tank (EGADS) after 3 years operation.
 - (3) New water system has been constructed.

p. 25

Back up slides

How to measure Rn in SK water

