Triggering Water Cherenkov Detectors

Tom Dealtry

Lancaster University

20th September, 2018

1 Triggering basics

- 2 Triggering at known time (e.g. beam ν)
- 3 Triggering at high energy (e.g. atmospheric ν)
- 4 Triggering at low energy, low rate (e.g. solar ν)
- 5 Triggering at low energy, high rate (e.g. SN ν)

Problem

- There is a lot of background in the detector that we don't want to keep
 - e.g. \sim 5 GB/s dark noise in Hyper-K
 - ★ 13 PB/month isn't cheap
- Trigger to save only the interesting events

But....

- Anything that doesn't pass the trigger is lost forever So...
 - Need an intelligent trigger that will keep signal with high efficiency and high background rejection

Triggering at known time (e.g. beam ν)

- Open a trigger gate when the physics will appear
- Difficulties
 - Synchronising the clock (can be 100s km)
 - ★ Solutions exist e.g. T2K's Super-K uses GPS
- Alternatively: use some of the triggers discussed later
 - Get high energy physics with high efficiency
 - But possibility to lose some of the low-E physics (e.g. NCQE, Coherent, ...)
- Relatively simple

Triggering Water Cherenkov Detectors

Triggering at high energy (e.g. atmospheric ν)

- Count the number of hits in a sliding time window (NHITS)
 - When goes above threshold, issue trigger
- Difficulties
 - Does not work at the lowest energies
 - $\star\,$ For Hyper-K, this means $E_{\rm electron}$ of few 10s MeV
 - $\star\,$ 44,000 PMTs @ 10 kHZ dark noise = 180 hits in 400 ns
 - $\star~{\sim}150$ hits for 10 MeV event
 - Doesn't work with events close to wall, directed to nearest wall
 - * Defining fiducial volume helps negate this

• Relatively simple

Triggering basics

- 2 Triggering at known time (e.g. beam u)
- f 3 Triggering at high energy (e.g. atmospheric u)
- 4 Triggering at low energy, low rate (e.g. solar ν)
 - 5 Triggering at low energy, high rate (e.g. SN ν)

Summary

Triggering at low energy, low rate (e.g. solar ν)

- $\mathcal{O}(10 \text{ MeV})$ electrons & photons are tricky to trigger on
 - From solar ν , supernova ν , neutron capture, ...
 - Number of hits overlaps with dark noise background
 - Radioactivity in water and glass can look like signal
- Need to use complex algorithms
- Important to lower threshold as much as possible

Super-K solar neutrino trigger

- Efficiency of super low energy trigger is
 - >99% @ 3.99 MeV recoil electron kinetic energy
 - ▶ ~84% @ 3.49 MeV
- Wide-band intelligent trigger (WIT) used to lower threshold to 2.5 MeV
 - Reconstruct vertices in real time
 - G. Carminati, Phys. Procedia 61 (2016) 666-672

Aside: Vertex reconstruction

- $\bullet\ <\!\!10$ MeV electrons travel only a few cm in water
 - Effectively a point source of Cherenkov light
- Photon time-of-flight correction of hit times will give a peak at vertex
 - Dark noise background is random and will remain flat
- Radioactive background concentrated at tank walls
 - Can cut on vertex position to remove this

Super-K solar neutrino trigger

- Pre-trigger
 - Require 11 hits (~2 MeV) above dark noise background (~12 hits) in 220 ns window
 - Reduces background by ${\sim}70\%$
- STORE (Software Triggered Online Reconstruction of Events)
 - Fnd list of 2 PMT correlations
 - 2 Look at 4 PMT correlations
 - ★ Time residuals of all four hits in each combination must be zero at its associated point
 - For fiducial vertices, look for coincidences of all hit PMTs
 - * If no coincidence in fiducial volume, event rejected
 - \blacktriangleright Reduces background by another ${\sim}30\%$

Super-K solar neutrino trigger

- Clusfit
 - Fast vertexing algorithm
 - * Removes isolated hits (dark noise, reflected/scattered light)
 - If no coincidence in fiducial volume, event rejected
- BONSAI (Branch Optimization Navigating Successive Annealing Iterations)
 - Maximum likelihood fit to timing residuals of Cherenkov signal & background
 - If largest-likelihood hypothesis is in fiducial volume, event stored

	Super-K	Hyper-K
Max direct light travel time (ns)	~ 220	${\sim}400$
NPMTs	${\sim}11000$	${\sim}44000$
PMT dark rate (kHz)	${\sim}5$	${\sim}10$
Noise hits in trigger decision window	~ 12	$\sim \! 180$
NHITS per MeV	~ 6	~ 15

- Hyper-K swamped by dark noise
 - Require fast algorithms

Hyper-K low energy trigger: test-vertices

- Time-correct all hits to all vertices on a fixed 5 m grid
 - Shrink time window from 400 to 20 ns
 - Reduces dark noise
- Look for a peak above threshold
- Algorithm returns vertex position(s)
 - Gives a chance to reject non-fiducial vertices that are radioactivity-dominated

Hyper-K: Test-vertices performance

- Left: vertex resolution $=\frac{1}{2}$ grid spacing
- Right: Kinetic energy threshold defined as 90% signal efficiency
 - Test-vertices trigger lowers threshold by 2 MeV

Hyper-K: Test-vertices performance

• Implemented on GPU

• $\mathcal{O}(10^4)$ times faster than a CPU

Hyper-K convolutional neural network

- Use pattern recognition to distinguish signal from background
 - Hyper-K is large camera
 - ***** PMTs = pixels
 - ★ Charge = greyscale value
- Lancaster MPhys student implemented this
 - Using off-the-shelf CNN algorithm
 - Currently neglecting top/bottom endcaps (to be extended)
- Promising results using just the barrel region
 - ▶ 89% efficiency @ 5 MeV; 9.5% dark noise acceptance

Tom Dealtry (Lancaster University)

Triggering Water Cherenkov Detectors

20th September, 2018 16 / 21

Triggering basics

- 2 Triggering at known time (e.g. beam u)
- f 3 Triggering at high energy (e.g. atmospheric u)
- 4 Triggering at low energy, low rate (e.g. solar u)
- 5 Triggering at low energy, high rate (e.g. SN ν)

Summary

Triggering at low energy, high rate (e.g. SN u)

- For a typical galactic supernova @ 10 kpc expect 100s of events
 - ► 52,000~79,000 at Hyper-K
 - ★ Range from SN models & oscillations
- These occur in ${\sim}10$ seconds
 - Most within the first second
- Energy $\mathcal{O}(10 \text{ MeV})$
- The SN may be too far away to give a positive trigger
 - Buffer data to wait for external trigger (e.g. from SNEWS)

Super-K SN trigger

- Reconstruct event vertex position, direction, & energy on SN monitor machine
- **②** Select events with E > 7 MeV in fiducial volume
 - Remove cosmic ray muons & their decay electrons
- Count number of reconstructed events in 20 seconds previous (N_{cluster})
- Analyse vertex distribution: it should be uniform in volume
 - Background: e.g. spallation events form a line/plane distribution
- Cut on N_{cluster} with volume-like requirement determines when experts analyse events
 - Automated phone calls, emails, alerts to SNEWS etc.
 - Takes just a few minutes from detection to alert

Astropart.Phys. 81 (2016) 39-48

Super-K SN trigger

- Almost 100% efficient at Large Magellanic Cloud
- SN direction also calculated using likelihood fit
 - Direction resolution a couple of degrees

- Known time & high energy physics are relatively simple to trigger
 - e.g. atmospheric ν , beam ν , proton decay
- Low energy, low rate require intelligent algorithms
 - 3 levels of vertex reconstruction in Super-K
 - \blacktriangleright Hyper-K exploring vertexing and CNN on GPUs
- Low energy, high rate requires buffering of data
 - Few minutes for self-triggered; potentially longer for external trigger