

Search for Atmospheric Tau Neutrinos in Super-Kamiokande

Zepeng Li, Duke University On behalf of the Super-Kamiokande collaboration TMEX-2018

Content

- Tau neutrino appearance in atmospheric neutrinos.
- Method of tau neutrino selection with neural network.
- Results.
- Future application of tau selection in three flavor oscillation analysis.

- Probabilities of v_{τ} appearance are calculated as a function of direction and neutrino energy with assumption of $(sin^2 2\theta_{23} = 1, \Delta m_{32}^2 = 2.1 \times 10^{-3} eV^2, sin^2 2\theta_{13} = 0.099, \text{ NH}).$
- Most v_{τ} appearance is from $v_{\mu} \rightarrow v_{\tau}$, has upward-going direction.

Duke university

Cosine Zenith Angle

- CC v_{τ} cross section suppressed by relatively large τ mass.
- Atmospheric tau neutrinos have wide energy range and a significant component of high energy neutrinos.

Duke UNIVERSITY

Duke UNIVERSITY

 Most accelerator-based neutrino experiments have bulk of neutrinos below the energy threshold for CC tau neutrino interactions.

Duke

- Fully-contained.
- Vertex in fiducial volume (distance to wall > 200 cm).
- Multi-GeV (evis > 1330 MeV)

- The large target mass of Super-Kamiokande, coupling with the wide energy range of atmospheric neutrinos, makes it possible to detect CC tau interactions.
- About 20 events expected in SK every year, ~3000 atmospheric neutrino events detected every year!

7

Tau Neutrino Events in SK

e,μ or hadrons.

Tau lepton produced in CC- v_{τ} interaction, but tau lepton decay in ~10⁻¹³ sec.

τ±

Vτ

Duke

Vτ

Decay mode	Branching ratio (%)
$\mu^- ar{ u}_\mu u_ au$	17.41 ± 0.04
$e^- \bar{\nu}_e \nu_{ au}$	17.83 ± 0.04
$\pi^- u_{ au}$	10.83 ± 0.06
$\pi^-\pi^0 u_ au$	25.52 ± 0.09
$\pi^- 2 \pi^0 u_ au$	9.3 ± 0.11
$\pi^- 3 \pi^0 u_ au$	1.05 ± 0.07
$\pi^-\pi^+\pi^- u_ au$	8.99 ± 0.06
$\pi^-\pi^+\pi^-\pi^0 u_ au$	8.99 ± 0.06
$h^-\omega u_ au$	2.00 ± 0.08

- Tau lepton is not directly detectable in Super-K.
- Multiple light-producing particles from hadronic tau decay.

Selection of CC Tau Events

Example of Background Simulation

Example of Tau Signal Simulation

- Signal events have signatures of tau decay.
- Tau signal events are typically classified as e-like event in standard reconstruction.

Selection of CC Tau Events

Example of Background Simulation

Duke

Example of Tau Signal Simulation

- Signal events have signatures of tau decay.
- Tau signal events are typically classified as e-like event in standard reconstruction.
- Not able to select with a single variable.

A Neural Network Algorithm for Tau Identification

Duke

NIVERSITY

- Log evis.
- PID max energy ring.
- # of decay electron.
- Max distance to decay-e.
- Sphericity.
- # of ring candidates.
- Fraction of energy in the first ring.

11

A Neural Network Algorithm for Tau Identification

Good BG/signal separation Good data/MC agreement

Background rejection versus Signal efficiency TMVA **Background rejection** 0.9 0.8 0.7 0.6 0.5 0.4 **MVA Method:** 0.3 MLP 0.2 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.4 Signal efficiency

If cut events at NN>0.5, 76% signal are selected, 28% background pass the cut.

Search for Tau Neutrino Appearance

- Two-dimensional likelihood built with event direction and neural network output for signal and background.
- Signal has high neural network output, and are mostly upward-going.

Search for Tau Neutrino)earance Neural Network Output 🥇 0.8 D D D 0.00 04

- Unbinned likelihood of data against PDFs.
- 5,326 days of SK atmospheric neutrino data used from SK-I to SK-IV.

Data = PDF_{bg} + $\alpha \times PDF_{tau}$ + $\sum \epsilon_i \times (tauPDF_i + bgPDF_i)$

0.5

Cosine of Zenith Angle

 α is the normalization of tau events. $(tau, bg)PDF_i$ is the PDF of i'th systematic error of shifting it by $I\sigma$, ε_i is the magnitude of the systematic error.

0.2

-0.5

Duke

Results of Search for Tau Neutrino Appearance

- A neural network algorithm is used to tag CC v_{τ} interactions.
- SK measures the normalization of tau events to be 1.47±0.32, excluding the notau-appearance hypothesis by 4.6σ.
- 338.1±72.7 fully-contained CC v_{τ} interactions measured.

Measurement of CC Tau Neutrino Cross in Super-K

Measured Normalization $\times \langle \sigma_{theory} \rangle$

• we need to calculate flux averaged cc tau cross section in the MC.

$$\langle \sigma_{theory} \rangle = \frac{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} \sigma_{theory} E_{\nu} dE_{\nu}}{\sum_{\nu_{\tau}, \bar{\nu}_{\tau}} \int \frac{d\Phi(E_{\nu})}{dE_{\nu}} dE_{\nu}}$$

Comparisons of the Result with DONUT Measurement

Duke

Comparisons of the Result with DONUT Measurement

The fraction of DIS events in Super-K CC tau neutrino sample is estimated to be 41%.

The DIS-only cross section is found to be $(0.40\pm0.08)\times10^{-38}$ cm², consistent with DONUT result.

- θ_{13} -induced electron neutrino appearance.
- A resonance depending on MH due to the matter effect.
- A measurement of the resonance helps to determine the MH.

Tau as Background in Three-flavor Neutrino Oscillations in Super-K $_{P(\nu_{\mu} \rightarrow \nu_{\tau})}^{\text{NH Assumption}}$

- CC tau events also shows up in upward-going multi-GeV region.
- Tau events are generally identified as showering e-like events.

Sensitivity to Mass Hierarchy with Tau Identification

- Event by event separation using the tau identification tools.
- SK performs a binned likelihood fit.

- A larger $\Delta \chi^2$ indicates better separation of two MH cases.
- Sensitivity study shows ~10% improvement in the sensitivity to MH.

Summary

- Tau normalization is measured to be 1.47±0.32 in Super-K, excluding the no-tauappearance hypothesis at a 4.6σ significance.
- A flux-averaged charged-current tau neutrino cross section is measured to be (0.94±0.20)×10⁻³⁸ cm².
- Tau identification tools are implemented in the three-flavor oscillation analysis, improving the sensitivity to MH by ~10%.

Backups

Systematic Errors

- The systematic errors in the oscillation analyses are used.
- The PDFs are built as change of event distribution for 1-σ change of systematic error.

Rejected Systematic Errors

Sensitivity Study with Toy MC

- Toy MC generated from signal and BG PDFs.
- Fit the tau normalization in the toy MC.
 - The p-value, fraction of toy MC with negative tau normalization, is calculated to be 4.4×10^{-4} .
- The expected significance is estimated to be 3.3σ .

Flux averaged CC tau cross section

Measured Normalization $\times \langle \sigma_{theory} \rangle$

 we need to calculate flux averaged cc tau cross section in the MC.

NIVERSITY

28

Measurement of CC tau cross section in Super-K

The flux-weighted theoretical cross section (gray dashed) is scaled to calculate the measured cross section (black cross).

Comparisons of the Result with DONUT Measurement

Duke

DONUT results converted to differential cross section and weighted by SK flux.

DONUT measured almost pure CC deep-inelastic at high neutrino energies. The extrapolation of DONUT measurement to low energy does not work well.

Comparison of σ/E Measurement at 70 GeV

10 ⁻³⁸ cm ² /GeV	SK Simulation	SK	DONUT
neutrino	0.46	0.67	0.52
Anti-neutrino	0.23	0.33	0.26
Average	0.35	0.51±0.11	0.27±0.13

- Neutrino/anti-neutrino ratio in SK 1.16.
- At high neutrino energy, the agreement is better.

Three-flavor Oscillation Analysis

SK performs a binned likelihood fit in the three-flavor analysis:

$$\chi^{2} = 2\sum_{i=1}^{n} \left[\left(N_{i}^{exp} (1 + \sum_{j} f_{ij}\epsilon_{j}) - N_{i}^{obs} \right) + N_{i}^{obs} \ln \frac{N_{i}^{obs}}{N_{i}^{exp} (1 + \sum_{j} f_{ij}\epsilon_{j})} \right] + \sum_{j} \left(\frac{\epsilon_{j}}{\sigma_{j}}\right)^{2}.$$

Use the Tau Identification in Threeflavor Oscillation Analysis

Multi-Ring e-like v_e

Each multi-GeV e-like bin is further divided into two bins: one with almost no tau BG, one with tau BG, in the binned fit.