Scalar-tensor cosmology in a minisuperspace formulation with Chaplygin gas

Marcin Postolak

Institute of Theoretical Physics Division of Theory of Gravity and Fundamental Interactions University of Wrocław

23.09.2022

The 8th Conference of the Polish Society on Relativity

Metric and hybrid metric-Palatini approach Hybrid metric-Palatini generalization

Hybrid metric-Palatini theories

•
$$f(R)$$
: $R = R(g) - \text{Ricci};$ $\hat{R} = g^{\mu\nu}\hat{R}_{\mu\nu}(\Gamma) - \text{Palatini-Ricci}$

$$S\left[g_{\mu\nu},\Gamma^{\alpha}_{\mu\nu}\right] = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[\Omega_A R(g) + F\left(\hat{R}(g,\Gamma)\right)\right] + S_m\left[g_{\mu\nu},\chi\right]; \quad (1)$$

Scalar-tensor:

$$S[g_{\mu\nu}, \Phi, \chi] = \frac{1}{2\kappa^2} \int d^4 x \sqrt{-g} \left[(\Omega_A + \Phi) R(g) + \frac{3}{2\Phi} \partial_\mu \Phi \partial^\mu \Phi - U(\Phi) \right]$$
(2)
+ $S_m[g_{\mu\nu}, \chi];$

- Limits:
 - $\begin{array}{ll} \Omega_A
 ightarrow 0 & {f Palatini} \ F(\hat{R}); \ \Omega_A
 ightarrow \infty & {f GR}; \end{array}$
- Action:

$$S[g_{\mu\nu}, \Phi] = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[\mathcal{A}(\Phi) \mathcal{R}(g) - \mathcal{B}(\Phi) g^{\mu\nu} \partial_\mu \Phi \partial_\nu \Phi - \mathcal{V}(\Phi) \right] + S_m \left[e^{2\alpha(\Phi)} g_{\mu\nu}, \chi \right]; \qquad \mathcal{R}(g) = \hat{\mathcal{R}}(g, \Gamma);$$
(3)

・ロト ・四ト ・ヨト ・ヨト

2

Metric and hybrid metric-Palatini approach Hybrid metric-Palatini generalization

Hybrid metric-Palatini generalization

• Field equations:

$$\mathcal{A}(\Phi)\mathcal{G}_{\mu\nu}(g) - \left(\nabla^{g}_{\mu}\nabla^{g}_{\nu} - g_{\mu\nu}\Box^{g}\right)\mathcal{A}(\Phi) = T^{\Phi}_{\mu\nu} + \kappa^{2}T_{\mu\nu}; \tag{4}$$

$$\mathcal{A}'(\Phi)\mathcal{R}(g) + \mathcal{B}'(\Phi)(\partial\Phi)^2 + 2\mathcal{B}(\Phi)\Box^g \Phi - \mathcal{V}'(\Phi) = -2\kappa^2 \alpha'(\Phi)T; \quad (5)$$

• Energy-momentum tensor for Φ :

$$T^{\Phi}_{\mu\nu} = \mathcal{B}(\Phi)\partial_{\mu}\Phi\partial_{\nu}\Phi - \frac{1}{2}\left[\mathcal{B}(\Phi)(\partial\Phi)^{2} + \mathcal{V}(\Phi)\right]g_{\mu\nu}$$

$$= -(\partial\Phi)^{2}\mathcal{B}(\Phi)u_{\mu}u_{\nu} - \frac{1}{2}\left[\mathcal{B}(\Phi)(\partial\Phi)^{2} + \mathcal{V}(\Phi)\right]g_{\mu\nu};$$
 (6)

where: $u_{\mu} = \frac{\partial_{\mu} \Phi}{\sqrt{-(\partial \Phi)^2}}.$

	$\mathcal{A}(\Phi)$	$\mathcal{B}(\Phi)$	$\mathcal{V}(\Phi)$	$\alpha(\Phi)$	
metric	Φ	0	$U_F(\Phi-1)$	0	Г:
Palatini	Φ	$-\frac{3}{2\Phi}$	$U_F(\Phi-1)$	0	
hybrid	$\Omega_A + \Phi$	$-\frac{3}{2\Phi}$	$U_F(\Phi)$	0	

Table 1: The corresponding metric ST frames for three cases of R + F(R) gravity.

イロン イ団 と イヨン イヨン

э.

STT and FLRW cosmology with lapse function Chaplygin gas models MSS reformulation

STT and FLRW cosmology with lapse function

• FLRW metric:

$$g_{\mu\nu} = \left(-N^2(t), \frac{a^2(t)}{1-kr^2}, a^2(t)r^2, a^2(t)r^2\sin^2\theta\right)$$
(7)

Ricci scalar:

$$R = \frac{6k}{a^2} + \frac{6}{N^2} \left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a} \frac{\dot{N}}{N} \right); \tag{8}$$

- Diffeomorphism invariance $\implies N(t)$ can be eliminated by setting N = 1;
- Stress-energy tensor for perfect fluid:

$$T_{\mu\nu} = (p+\rho)u_{\mu}u_{\nu} + pg_{\mu\nu}, \qquad u^{\mu} = (N^{-1}, 0, 0, 0);$$
 (9)

 In the most general case, the stress-energy tensor is not conserved, unless there is no anomalous coupling between the matter part of the action and Φ:

$$\nabla_{\mu}T^{\mu\nu} = \alpha'(\Phi)T\partial^{\nu}\Phi; \qquad (10)$$

 Continuity equation for (9) in the case of non-minimal coupling between matter and Φ:

$$\dot{\rho} + 3H(p+\rho) = -\dot{\alpha}(\phi)(3p-\rho) \tag{11}$$

Equations of state for Chaplygin gas models

• Chaplygin gas (CG) [5]:

$$p_{CG}(\rho) = -\frac{A}{\rho}, \qquad A > 0; \tag{12}$$

• Generalized Chaplygin gas (GCG) [2]:

$$p_{GCG}(\rho) = -\frac{A}{\rho^{\beta}}, \qquad 0 < \beta \le 1;$$
(13)

Modified Chaplygin gas (MCG) [1]:

$$p_{MCG}(\rho) = B\rho - \frac{A}{\rho^{\beta}}; \qquad (14)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• New generalized Chaplygin gas (NGCG) [7]:

$$p_{NGCG}(\rho) = -\frac{\tilde{A}(a)}{\rho^{\beta}} = \frac{\omega A a^{-3(1+\omega)(1+\beta)}}{\rho^{\beta}}, \qquad -1.46 < \omega < -0.78;$$
(15)

• Viscous generalized Chaplygin gas (VGCG) [6]:

$$p_{VGCG}(\rho) = -\frac{A}{\rho^{\beta}} - \sqrt{3}\zeta_0 \rho, \qquad \zeta_0 \ge 10^{-5}.$$
 (16)

STT and FLRW cosmology with lapse function Chaplygin gas models MSS reformulation

Example - CG

$$\rho_{CG}(a,\Phi) = \frac{e^{\alpha(\Phi)}\sqrt{Aa^{6}e^{6\alpha(\Phi)} + B_{1}}}{a^{3}}; \qquad (17)$$

Behavior of energy density - CG

•
$$a \ll 1 \Longrightarrow \rho_{CG}(a, \Phi) \simeq \frac{e^{\alpha(\Phi)}\sqrt{B_1}}{a^3} \simeq e^{\alpha(\Phi)}a^{-3}$$
 (Matter domination);
• $a \to 1 \Longrightarrow \rho_{CG}(a, \Phi) \simeq e^{\alpha(\Phi)}\sqrt{Ae^{6\alpha(\Phi)}} + B_1$ (Dark Energy domination);
• $a \to \infty \Longrightarrow \rho_{CG}(a, \Phi) \simeq e^{\alpha(\Phi)}\sqrt{Ae^{6\alpha(\Phi)}}$ (Dark Energy domination).

イロン イ団 と イヨン イヨン

2

MSS formalism

- We need to obtain from the action (3) the effective Lagrangian employing only the time-dependent variables minisuperspace (MSS) formalism;
- The effective MSS Lagrangian:

$$L_{MSS}(N, x, \dot{x}) = \frac{1}{2N} m_{jk}(x) \dot{x}^{j} \dot{x}^{k} - NV_{MSS}(x)$$
(18)

lives in a 3D configuration space with $\left(x^{j}\right)\Big|_{j=1,2}=(a,\Phi)$;

- Nondynamical character of the variable $N: p_N \equiv \frac{\partial L_{MSS}}{\partial N} = 0$ \implies (18) is singular and can be reduced to the plane as a configuration space;
- The kinetic energy term of such a reduced system is determined by a metric [4]:

$$m_{ij} \equiv m_{ij} \left(a, \Phi \right) = \begin{pmatrix} -12a\mathcal{A}(\Phi) & -6a^2\mathcal{A}'(\Phi) \\ -6a^2\mathcal{A}'(\Phi) & 2a^3\mathcal{B}(\Phi) \end{pmatrix}$$
(19)

providing the geometry to a 2D configuration (a, Φ) -plane $\subset \mathbb{R}_+ \times \mathbb{R}$ - **MSS**;

イロト イポト イヨト イヨト

MSS formalism

• *N*(*t*) enters the action in a nondynamical way \implies constraint equation obtained from one of the Euler-Lagrange equations:

$$\frac{\partial L_{MSS}}{\partial N} - \frac{d}{dt} \frac{\partial L_{MSS}}{\partial \dot{N}} = \frac{\partial L_{MSS}}{\partial N} = 0 \Leftrightarrow \frac{1}{2N^2} m_{ij} \dot{x}^i \dot{x}^j + V_{MSS} = 0; \quad (20)$$

• Equations of motion for the remaining two variables [7]:

$$m_{il}\ddot{x}^{l} + \frac{1}{2}\delta_{i}^{p}\left(\partial_{j}m_{pk} + \partial_{k}m_{pj} - \partial_{p}m_{jk}\right)\dot{x}^{j}\dot{x}^{k} = m_{il}\frac{\dot{N}}{N}\dot{x}^{l} - N^{2}\partial_{i}V_{MSS}; \qquad (21)$$

- *N*(*t*) plays a role of an **additional gauge degree of freedom** which is responsible for a time reparametrization and suitably modifies the constraint equation (20);
- Newtonian mechanical system represented by the effective MSS Lagrangian (18) is **fully equivalent** to the one obtained from the Einstein field equations imposed on the FLRW metric (7);

< ロ > < 同 > < 回 > < 回 > .

Cauchy data

• Reformulation:

$$V_m(\mathbf{a}, \Phi) = 3\mathcal{H}_0^2 \Omega_0 \rho\left(\mathbf{a}, \Phi\right), \qquad \Omega_0 = \frac{2\kappa^2 \rho_0}{3\mathcal{H}_0^2}; \qquad (22)$$

Normalization:

$$a_0 = 1 \Longrightarrow \dot{a}_0 = \mathcal{H}_0;$$
 (23)

Constraint on Φ and Φ:

$$3\mathcal{H}_{0}^{2} = -3\frac{\mathcal{A}'}{\mathcal{A}}\Big|_{\Phi=\Phi_{0}}\mathcal{H}\dot{\Phi}_{0} + \frac{\mathcal{B}}{2\mathcal{A}}\Big|_{\Phi=\Phi_{0}}\dot{\Phi}_{0}^{2} - k + \frac{\mathcal{V}}{2\mathcal{A}}\Big|_{\Phi=\Phi_{0}} + \frac{V_{m}}{2\mathcal{A}}\Big|_{a=1,\Phi=\Phi_{0}}; \quad (24)$$

• Assuming that $\dot{\Phi}_0=0,$ one gets a $\Lambda\text{-CDM}$ type relation:

$$1 = \Omega_{\Lambda} + \Omega_{k} + \frac{1}{2\mathcal{A}(\Phi_{0})}\rho(a_{0}, \alpha(\Phi_{0})), \qquad (25)$$

where:

$$\Omega_k = -\frac{k}{3\mathcal{H}_0^2} \qquad \Omega_{\Lambda} = \frac{\mathcal{V}(\Phi_0)}{6\mathcal{H}_0^2 \mathcal{A}(\Phi_0)} \tag{26}$$

• In such a scenario the observed matter could differ from "true" matter by an exponential factor with α (Φ_0) in ρ (a, Φ).

ଚର୍ଚ 9/21

STT in the Jordan frame Effective MSS description for STT Cosmological models References	A-CDM-like models Bounce-like models Cyclic Bounce-like models
--	--

	CG	GCG	MCG	NGCG	VGCGI	VGCGII
Metric-hybrid $\alpha = 0 + $ Starobinsky	Β, Λ	-	-	Β, Λ	Β, Λ	B, B
Metric $\alpha = 0 + $ Starobinsky	Λ	-	-	Λ	Λ	٨
Metric-hybrid $\alpha = 0$	Λ	-	-	Λ	Λ	В
Metric-hybrid $lpha = rac{1}{2} \ln \left(rac{1}{\mathcal{A}(\Phi)} \right)$	СВ	-	٨	СВ	х	٨
Metric $\alpha = \frac{1}{2} \ln \left(\frac{1}{\mathcal{A}(\Phi)} \right) + $ Starobinsky	۸	-	-	-	-	-
Metric-hybrid $\alpha = \frac{1}{2} \ln \left(\frac{1}{\mathcal{A}(\Phi)} \right) + $ Starobinsky	B, CB	-	٨	СВ	٨	СВ

Table 2: Types of cosmological models obtained for particular cases of Chaplygin gas. Models labels: B - bounce, CB - cyclic bounce, Λ - Λ -CDM, X - incompatible with Λ -CDM, - lack of numerical results.

イロト イボト イヨト イヨト

э.

A-CDM-like models Bounce-like models Cyclic Bounce-like models

• Hybrid metric-Palatini with
$$\alpha = \frac{1}{2} \left(\frac{1}{\mathcal{A}(\Phi)} \right)$$
: MCG

Figure 1: Time dependence of the scale factor (NGCG, A-CDM).

Figure 2: Time dependence of the scalar field for MCG.

イロト イヨト イヨト イヨト

æ

Figure 4: Time dependence of the energy density for MCG.

★ E ► ★ E ►

12/21

æ

Figure 5: Effective MSS potential for MCG.

◆□ → ◆ □ → ◆ □ → □ □

STT in the Jordan frame Effective MSS description for STT Cosmological models References Cyclic Bounce-like models

• Hybrid metric-Palatini with $\alpha = \frac{1}{2} \left(\frac{1}{\mathcal{A}(\Phi)} \right)$ and Starobinsky potential: CG

< 6 b

∃ ► < ∃ ►</p>

Figure 9: Time dependence of the energy density for CG.

イロト イロト イヨト イヨト

15 / 21

æ

Figure 10: Effective MSS potential for CG. \flat \prec B \flat \prec B \flat \rightarrow B

A-CDM-like models Bounce-like models Cyclic Bounce-like models

• Hybrid metric-Palatini with $\alpha = \frac{1}{2} \left(\frac{1}{\mathcal{A}(\Phi)} \right)$: NGCG

< (T) >

★ 문 ► ★ 문 ►

э

★ E ► ★ E ►

oft] NGCG_.

18 / 21

э

Figure 15: Effective MSS potential for NGCG.

イロン イ団 と イヨン イヨン

ъ.

A-CDM-like models Bounce-like models Cyclic Bounce-like models

Conclusions

- Hybrid metric-Palatini models with nonzero $\alpha(\Phi)$ in the MSS formalism seem to best fit the Λ -CDM model for the current observation range;
- Of all the cases considered, **NGCG reproduces the standard cosmological model** in the best way and it represents the Cyclic Bounce cosmological model;
- Models with non-minimal coupling between Φ and R and simultaneous coupling between matter and Φ in the case of the MSS formalism may describe general models of Bounce Cosmology and New Bounce Cosmology.

4 A I

★ ∃ ► < ∃ ►</p>

- H. B. Benaoum. "Modified Chaplygin Gas Cosmology". In: Advances in High Energy Physics 2012 (2012). DOI: 10.1155/2012/357802. URL: https://doi.org/10.1155/2012/357802.
- [2] M. C. Bento, O. Bertolami, and A. A. Sen. "Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification". In: *Phys. Rev. D* 66 (4 Aug. 2002), p. 043507. DOI: 10.1103/PhysRevD.66.043507. URL: https://link.aps.org/doi/10.1103/PhysRevD.66.043507.
- [3] A. Borowiec and A. Kozak. "New class of hybrid metric-Palatini scalar-tensor theories of gravity". In: Journal of Cosmology and Astroparticle Physics 2020.07 (July 2020), pp. 003–003. DOI: 10.1088/1475-7516/2020/07/003. URL: https://doi.org/10.1088/1475-7516/2020/07/003.
- [4] A. Borowiec and A. Kozak. "Scalar-tensor cosmologies in a minisuperspace formulation: A case study". In: Phys. Rev. D 105 (4 Feb. 2022), p. 044011. DOI: 10.1103/PhysRevD.105.044011. URL: https://link.aps.org/doi/10.1103/PhysRevD.105.044011.
- [5] Abha Dev, J. S. Alcaniz, and Deepak Jain. "Cosmological consequences of a Chaplygin gas dark energy". In: Phys. Rev. D 67 (2 Jan. 2003), p. 023515. DOI: 10.1103/PhysRevD.67.023515. URL: https://link.aps.org/doi/10.1103/PhysRevD.67.023515.
- [6] XIANG-HUA ZHAI, YOU-DONG XU, and XIN-ZHOU LI. "VISCOUS GENERALIZED CHAPLYGIN GAS". In: International Journal of Modern Physics D 15.08 (2006), pp. 1151–1161. DOI: 10.1142/S0218271806008784. URL: https://doi.org/10.1142/S0218271806008784.
- [7] Xin Zhang, Feng-Quan Wu, and Jingfei Zhang. "New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter". In: Journal of Cosmology and Astroparticle Physics 2006.01 (Jan. 2006), pp. 003–003. DOI: 10.1088/1475-7516/2006/01/003. URL: https://doi.org/10.1088/1475-7516/2006/01/003.