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STT in the Jordan frame

Metric and hybrid metric-Palatini approach

Hybrid metric-Palatini generalization

Hybrid metric-Palatini theories

e f(R): R = R(g) — Ricci; R = g#”R,,, () — Palatini-Ricci

S [gun, T3] = 212 d*x\/—g [2R(g) + F (R(g,1))] + Smlguv. 1 (1)
@ Scalar-tensor:

Slgun @] = 55 [ d'x/8 [+ O)R(@) + 5.0,00"0 — U(@)]

(2)
+ Sm [guua X] '
o Limits: )
Qa—0 Palatini F(R);
Qp — 0 GR;
@ Action:
Slguw, ®] = /d4x1/ — B(P)gH 8,08, D — V(d)] )
3

+Sm [ @gu,x]:  R(g)=Rg )
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STT in the Jordan frame
Metric and hybrid metric-Palatini approach

Hybrid metric-Palatini generalization

Hybrid metric-Palatini generalization

o Field equations:
A(®)Gun(g) — (VEVE — guwDE) A(®) = T2, + K2 Ty (4)
A (®)R(g) + B/ (®) ()2 + 2B(d)DED — V' () = —262a/(®)T;  (5)

o Energy-momentum tensor for ®:
T, = B($)9,98,0 — ~ [B()(8%)? + V(®)] g

= —(30)*B(®)upuy — = [B(®)(89)* +V(P)] guvi

o ®

where: v, = W

A(®) | B(®) V(®) a(®)
metric [} 0 Ur(® - 1) 0
Palatini ) —2 [ Ue(®-1) 0 [3]
: 0

hybrid | Qa+® | — > Ur(®)

Table 1: The corresponding metric ST frames for three cases of R + F(R) gravity.
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Effective MSS description for STT

smology with lapse function

STT and FLRW cosmology with lapse function

o FLRW metric:

g = [ —N2(), 220 202, 2(8)2 sin? 0 @)
Nz ) 1_ kr2 ) )
@ Ricci scalar: .
6k 6 (& aN
R==-+—=|=+-—=]); 8
32+N2<a2+aN) ®)
o Diffeomorphism invariance =—> N(t) can be eliminated by setting N = 1;

o Stress-energy tensor for perfect fluid:

Tuw = (p+ p)uptn + pguw, v =(N71,0,0,0); (9)

In the most general case, the stress-energy tensor is not conserved, unless there
is no anomalous coupling between the matter part of the action and ®:

V. TH = o/ () To" o; (10)
o Continuity equation for (9) in the case of non-minimal coupling between matter

and ¢:
(11)
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STT and FLRW cosmology with lapse function
Chaplygin gas models

MSS reformulation

Effective MSS description for STT

Equations of state for Chaplygin gas models

@ Chaplygin gas (CG) [5]:
A
pcc(p) = o A>0; (12)
@ Generalized Chaplygin gas (GCG) [2]:
A
pPece(p) = ——, 0<B<L (13)
p
@ Modified Chaplygin gas (MCG) [1]:
A
puce(p) = Bp — —; (14)
P
@ New generalized Chaplygin gas (NGCG) [7]:
/~4(a) wAa—3+w)(1+8)

prees(p) = ——5 = ———F——, —1l46<w < —0.78; (15)
p p

@ Viscous generalized Chaplygin gas (VGCG) [6]:

A _
pvece(p) = i V3¢op, Co>107°. (16)
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STT and FLRW cosmology with lapse function
Chaplygin gas models

MSS reformulation

Effective MSS description for STT

®)
0 ak 1= pcg(a,d) ~ :73\/371 ~ e(®) 53 (Matter domination);
e a—1= pcg(a,P) ~ e(®)/ Aef2(®) + By (Dark Energy domination);

@ a— 00 = pcg(a,P) ~ e™(®)y/Aeb(®) (Dark Energy domination).
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h lapse functio

Effective MSS description for STT

o We need to obtain from the action (3) the effective Lagrangian employing only
the time-dependent variables - minisuperspace (MSS) formalism;

o The effective MSS Lagrangian:

. 1
Luss (N, x,x) = ﬁmjk(X)XJXk — NVss(x) (18)

lives in a 3D configuration space with (xj) ’j71 L= (a,9);

o Nondynamical character of the variable N: py = % =0
= (18) is singular and can be reduced to the plane as a configuration space;

@ The kinetic energy term of such a reduced system is determined by a metric [4]:

—12aA(®) 76a2.A’(¢)> (19)

it = i (6, ) = (*63%4/(4’) 22°5(®)

providing the geometry to a 2D configuration (a, ®)-plane C R+ x R - MSS;
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STT and FLRW cosmology with lapse function

Effective MSS description for STT

Chaplygin gas models
MSS reformulation

o N(t) enters the action in a nondynamical way = constraint equation obtained
from one of the Euler-Lagrange equations:

OLyss  d OLyss  Olyss

1 o
= = e =0& —m;x'3 + Vyss = 0; 20
ON  dt oN N o2 MiX Xt Viss (20)

o Equations of motion for the remaining two variables [7]:
] 1 p ook N ol 2
myXx" + 561‘ (8jmpk + 8kmpj = apmjk) xX'x" = mHNX — N°9;Vss;: (21)

o N(t) plays a role of an additional gauge degree of freedom which is responsible
for a time reparametrization and suitably modifies the constraint equation (20);

o Newtonian mechanical system represented by the effective MSS Lagrangian (18)
is fully equivalent to the one obtained from the Einstein field equations imposed
on the FLRW metric (7);
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STT and FLR ] vith lapse function
Chaplygi
MSS reformulation

Effective MSS description for STT

o Reformulation:
Vin (3, 0) = 32200 (2,0), Q0 = 2210, (22)
m\4, - 0~40pP 4, ) 0 — 3’}‘"(2) h
o Normalization:
a0 = 1= a = Ho; (23)
o Constraint on ® and ¢:
4 . B . V,
37-[3 = —3i Hbo + — d% — k+ Y = :(24)
A lo=a, 2A lp=g, 2A0e=0y  2Alaz1,0=0,
o Assuming that by = 0, one gets a A-CDM type relation:
1
1=0p+ QU+ ——p(a0, a(Po)), 25
A k 2A(¢o)p(0 (®0)) (25)
where: " V(o)
0
U=—273 WN=—m (26)
3Hj 6H5A(Po)
@ In such a scenario the observed matter could differ from “true” matter by an
exponential factor with a(®g) in p(a, P).
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Cosmological models

NA-CDM-like models
bunce-like models

Cyclic Bounce-like mc

CG GCG MCG NGCG VGCGI VGCGII
Metric-hybrid @ = 0 + Starobinsky B, A - - B, A B, A B, B
Metric « = 0 + Starobinsky A - - A A A
Metric-hybrid o = 0 A - - A A B
Metric-hybrid o = 3 In (ﬁ) cB - A cB A
Metric o = % In (A%@)) + Starobinsky A - - - - -
Metric-hybrid o = § In (ﬁ) + Starobinsky | B, CB - A cB A cB

Table 2: Types of cosmological models obtained for particular cases of Chaplygin gas. Models
labels: B - bounce, CB - cyclic bounce, A - A-CDM, X - incompatible with A-CDM, - lack of

numerical results.
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A-CDM-like models

Bounce-like models

Cosmological models -
8 Cyclic Bounce-like models

. . .. _ 1 1 .
@ Hybrid metric-Palatini with oo = 5 (W) MCG
! ' ’ M( o L ’ ' ' 1) MCGiuny
Figure 1: Time dependence of the scale factor Figure 2: Time dependence of the scalar field for

(neee . D) MCG.
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A-CDM-like models

Bounce-like mode

Cosmological models -
8 Cyclic Bounce-like models
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Figure 3: Time dependence of the Hubble parameter Figure 4: Time dependence of the energy density for
voco . Y
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Figure 5: Effective MSS potential for MCG.
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A-CDM-like models
Bounce-like models
Cyclic Bounce-like models

Cosmological models

o Hybrid metric-Palatini with oo = % (ﬁ) and Starobinsky potential: CG
alt] CGigay +Starobinsky
‘ ‘ ‘ ‘ ‘ ‘ ‘ 4111 CGg +Starobinsky

Figure 6: Time dependence of the scale factor

( NGCG |, -) Figure 7: Time dependence of the scalar field for CG.
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A-CDM-like models
Bounce-like models

Cosmological models Cycli

Bounce-like models

HIt) CGiyy+Starobinsky
' ' 1t CGo +Starobinsky
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Figure 8: Time dependence of the Hubble parameter Figure 9: Time dependence of the energy density for

(Nece I cG.
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Figure 10: Effective MSS potential for CG.
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Cosmological models

@ Hybrid metric-Palatini with o = % (

alt] NGCGys
) INGCOps |

NA-CDM-like models

Bounce-like mode
Cyclic Bounce- Ilke models

4%5):NGCG

HNGCGy

Figure 11: Time dependence of the scale factor

( NGCG

] U

Figure 12: Time dependence of the scalar field for
NGCG.
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A-CDM-like models
Bounce-like models
Cyclic Bounce-like models

Cosmological models

HIt NGCGos
T

PUNGCGus

s

Figure 13: Time dependence of the Hubble parameter Figure 14: Time dependence of the energy density for
(neee . DD NGCG.
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A-CDM-like models

Bounce-like models
Cyclic Bounce-like models

Vuss[a.¢] NGCG
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NA-CDM-like models

Bounce-like mc
Cyclic Bounce-like models

Cosmological models

Conclusions

o Hybrid metric-Palatini models with nonzero a(®) in the MSS formalism seem
to best fit the A-CDM model for the current observation range;

o Of all the cases considered, NGCG reproduces the standard cosmological model
in the best way and it represents the Cyclic Bounce cosmological model,

@ Models with non-minimal coupling between ® and R and simultaneous coupling
between matter and ® in the case of the MSS formalism may describe general
models of Bounce Cosmology and New Bounce Cosmology.
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