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Introduction to cosmic inflation

Let us assume, that the flat FRW Universe with the metric tensor

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2) ,

is filled with a homogeneous scalar field φ(t) with potential V (φ).
The a(t) is the scale factor. Then

3H2 = ρ =
1

2
φ̇2 + V , 2Ḣ = −(ρ+ P) = −φ̇2 , (1)

where H = ȧ
a is a Hubble parameter.

Let us note that

Ḣ

H2
= − 3φ̇2

φ̇2 + 2V
⇒ Ḣ � H2 for φ̇2 � V . (2)

When H ∼ const one obtains a ∼ eHt → exponential expansion of
the Universe! This is an example of the cosmic inflation.
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ABC of slow-roll approximation

We have a scalar field with a potential V (φ) and a canonical
kinetic term 1

2 φ̇
2. Let’s define 2 slow-roll parameters

ε =
1

2

(
Vφ
V

)2

, η =
Vφφ
V

(3)

ε� 1 means that Ḣ � H2, which means that H ' const, which
gives

a ' eHt ← inflation (4)

η � 1 means that inflation will last for some time (but it’s actually
more complicated). Inflation consistent with the data requires both
slow-roll parameters to be very small!



Comparison with the data
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How to translate that to observables?

During inflation one produces primordial inhomogeneities. Knowing

I what kind of gravity we have

I what’s the kinetic term of the field

I what’s the potential of the field

we can calculate the power spectrum of ζ - curvature perturbations
and h - tensor perturbations (primordial gravitational waves)

What can we compare to observations?

Pζ ∝
V

ε
, r =

Ph

Pζ
= 16ε , ns = 1 +

d logPζ
d log k

= 1−6ε+ 2η (7)

All taken at some particular scale, which corresponds to
N ∼ 50− 60 before the end of inflation
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Experimental constraints
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We have to get both η and ε very small! Small r translates to
small V . Biggets possible V is ∼ (1015GeV )4



Why low scale of inflation?

I Scale of inflation can be actually much lower that r would
suggest. For instance in some theories of massive gravity one
finds strong amplification of primordial GW and only theories
with a very low scale of inflation may fit to the data

I Low scale inflation may be a part of the dynamical solution for
Higgs hierarchy problem (Higgs + Axion)

I Low scale inflation is a must from the point of view of the
lowest theoretically allowed physical scales.

I Allowed range of r is kind of wild. O(10−70) < r < O(10−2).
What if we wont find any inflation in the highest possible
scales?



What’s the scale of inflation?

OK, getting very low scale of inflation should be really easy. We
just need

ε→ 0 , η →∼ −0.02 (8)

It’s actually really hard, because η and ε are not really
independent!

The easiest way to see it? Let’s consider ε = ε(N)

η = 2ε+
εN

2ε
, ns = 1− 6ε+ 2η = 1 +

εN

2ε
− 2ε , (9)

which for ε = ε0N
−n gives

η ∼ − n

2N
(10)

Since N ∼ 50 one cannot get n much bigger than 2



Allowed range of n and ε0
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The best ε

Using

ε =
ε0
Nn

, (11)

One can parameterize vast majority of used models

I n = 1 - a typical case of power-law potentials, like V ∝ φ,
V ∝ φ2, V ∝ φ4 etc.

I n = 2 - Starobinsky-like models, Higgs inflation, α-attractors.
These guys typically predict r ∼ 10−3. Anything significantly
lower than that requires fine tuning.

The very best option is big n or n→∞

ε = e−4
N?
M2 , ns = 1− 4

M2
− 2 e−4

N?
M2 , V ∝ e−φ

2/M2
(12)



Warm inflation

What’s the true source of the problem? Big η parameter. How
could we decrease it? By increasing the cosmic friction

φ̈+ 3Hφ̇+ Vφ = 0 cold inflation (13)

ρ̇r + 4Hρr = 0 (14)

vs

φ̈+ (3H + Γ)φ̇+ Vφ = φ̈+ 3H(1 + Q)φ̇+ Vφ = 0 , (15)

ρ̇r + 4Hρr = φ̇2Γ = 3HQφ̇2 . warm inflation (16)

We define Q = Γ/3H. Now our slow-roll parameters look like

εeff =
ε

1 + Q
, ηeff =

η

1 + Q
(17)

Big Q decreases the value of η and should enable good ns



ABC of warm inflation

Assuming temperature-independent form of Γ one finds

Ph = 8

(
H

2π

)2

, (18)

PR =

(
H

2π

)2(H

φ̇

)2
(

1 +
T

H

2
√

3πQ√
3 + 4πQ

)
, (19)

where all of the functions are taken at the moment of the horizon
crossing. In the cold inflationary scenario, i.e. for Q → 0, one
recovers PR ∝ H4/φ̇2.

EASY to calculate, since H, φ and T satisfy slow-roll equations
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Strong dissipation regime

In the Q � 1 limit one finds

PR '
√

3π

2

H3Q T

φ̇2
, ns ' 1− 1

Q

(
9

4
(ε+ β)− 3

2
η

)
, (20)

where

ε =
V 2
φ

2V 2
, η =

Vφφ
V

, β =
ΓφVφ
ΓV

(21)

and Vφ = dV
dφ . The simplest scenario to consider is Q = const,

which gives Γ ∝
√
H. In such a case one finds Γφ/Γ ∝ 1

2Vφ/V ,
which gives β = ε and in consequence ns ' 1− (9ε/2− 3η/2)/Q.



Example of the bell-curve potential

Our starting point was the n→∞ limit, i.e. the bell-curve
potential! Dreadful, due to its huge η parameter. For finite n it all
works really well!

ns ' 1− 1

4Q

(
6ε0N

−n +
3n

N

)
(22)

Typical situation: ε0 ∼ O(1), hence 3n/N � ε0N
−n.

Otherwise -
massive fine tuning!

Note: Q ∼ n always saves the day
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Example of the bell-curve potential
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Figure: Allowed range of n for N = 60 (red area) and N = 50 (blue area),
for which ns from the Eq. (22) is consistent with the Planck data.



Problems? Advantages?

I Temperature-dependence of Γ would make everything super
complicated

I No need for reheating! No need for thermalization! BBN
could start right away after inflation

I At the end of the day ANY scale of inflation would do. We
can stop worrying about the nearest vicinity of the GUT scale


