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Introduction

� Observational evidences suggest that the Universe had undergone an exponential expansion phase in
the early Universe, known as the inflation phase1.

� During the inflationary phase, the Universe grew exponentially, expanded rapidly and in a short span of
time attained an immense size.

� Geometrically, the expansion rate along the spatial directions can be obtained through the scale factor
a(t) and the evolution of Hubble parameter is based on the scale factor as, H = ȧ(t)/a(t). So, there are
two possibilities:

i) The scale factor attains a value zero, that leads to the big bang singularity or the space time
curvature singularity.

ii) The bouncing behaviour i.e. without attain the singularity, the evolution would increase again,
which is an early Universe era. Since the scale factor never zero, the space time singularity would never
occur. The bounce happens when H vanishes and Ḣ > 0.

1R. Brout, F. Englert, E. Gunzig, Ann. Phys., 115, 78 (1978); A.A. Starobinsky, Phys. Lett. B, 91, 99 (1980); A.H.
Guth, Phys. Rev. D, 23, 347 (1981).
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Introduction

� Bouncing cosmology can be derived as a cosmological solution of loop quantum cosmology (LQC)2.

� The matter bounce scenario generates an almost scale-invariant primordial power spectrum and leads
to a matter-dominated epoch during the late phase of expansion3.

� In this scenario, the Universe formed from an epoch in the contracting era with enormous negative time
where primordial space time perturbations are generated far inside the comoving Hubble radius.

� The comoving Hubble radius, rh = 1/(aH) rises monotonically over time and eventually diverges to
infinity in the far future. This has be resulted in the deceleration stage at the late expansion phase.

� The comoving Hubble radius in most of the bouncing models based on the modified theories of gravity
grows with the cosmic time.

2A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D, 74, 084003 (2006); M. Sami, P. Singh, S. Tsujikawa, Phys. Rev.
D, 74, 043514 (2006).

3Y.F. Cai et al., Phys. Rev. D, 80, 023511 (2009).
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Introduction

� Realizing a bouncing cosmological model is not straightforward because the null energy condition
contained in the phenomenological models, which needs to be negative when the Hubble rate to grow
and the bounce to happen 4.

� An exact matter bounce scenario with a single scalar field leads to an essentially scale-invariant power
spectrum5. The matter bounce scenario is suffering from two important flaws:

i) BKL (Belinski–Khalatnikov–Lifshitz) instability, i.e, the space time anisotropic energy density in-
creases faster than that of the bouncing agent during the contracting phase. As a result the background
evolution became unstable.

ii) In the perturbation evolution, large tensor to scalar ratio implying the scalar and tensor perturbations
have similar amplitudes.

4S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D, 90, 124083 (2014).
5S.D.Odintsov, V.K. Oikonomou, T. Paul, Nucl. Phys. B, 959, 115159 (2020); S.D. Odintsov et al. , Phys. Dark

Univ., 33, 100864 (2021).
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Problem Statement

� The extended symmetric teleparallel gravity, namely f (Q) gravity is another geometrical modified
theories of gravity that has been recently formulated using the non-metricity approach6.

� The matter bounce scenario motivated with the loop quantum cosmology in f (Q) gravity would be
investigated.

6J. B. Jimenez, L. Heisenberg, T. Koivisto, Phys. Rev. D, 98, 044048 (2018).
B. Mishra (BITS-Pilani, Hyderabad) The 8th Conference of Polish Society on Relativity Sept 19,2022 6 / 25
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f(Q) Gravity
The metric tensor gµν is the generalisation of gravitational potential and the affine connection Γµ αβ

describes the parallel transport and covariant derivatives. Some assumptions on the affine connection
specifies the metric affine geometry 7. The metric affine connection can be expressed in three
independent components as 8,

Γαµν = {α µν}+ Kα
µν + Lαµν (1)

where the three terms on the R.H.S. denotes the Levi-Civita Connection, Contortion and the
disformation tensor respectively and can be expressed as,

{αµν} ≡ 1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν)

Kα
µν ≡ 1

2
Tα

µν + T α
(µ ν); Tα

µν ≡ 2Γα[µν]

Lαµν ≡ 1

2
Qα

µν − Q α
(µν) . (2)

7L. Jarv, M. Runkla, M. Saal, O. Vilson, Phys. Rev. D, 97, 124025 (2018).
8F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Neeman, Phys. Rep. 258, 1 (1995), T. Ortin, Gravity and Strings

(Cambridge University Press, Cambridge, England, 2015).
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f(Q) Gravity

The super potential of the model ,

Pα
µν = −1

2
Lαµν +

1

4

(
Qα − Q̃α

)
gµν − 1

4
δα(µQν), (3)

where Qα = gµνQαµν and Q̃α = gµνQµαν with Qαµν be the nonmetricity tensor.

The nonmetricity scalar,
Q = −QαµνP

αµν (4)
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The Field Equations
The action of f (Q) gravity,

S =

∫
d4x

√
−g

(
−1

2
f (Q) + LM

)
, (5)

The field equations of f (Q) gravity,

2√
−g

∇α

(√
−gfQP

α
µν

)
+

1

2
gµν f + fQ

(
PµαβQ

αβ
ν − 2QαβµP

αβ
ν

)
= Tµν (6)

The energy momentum tensor,

Tµν = − 2√
−g

δ
√
−gLm

δgµν
(7)

The homogeneous and isotropic FLRW space time,

ds2 = −N2(t)dt2 + a2(t)(dx2 + dy2 + dz2), (8)

The field equations,

6fQH
2 − 1

2
f = ρ (9)(

12H2fQQ + fQ
)
Ḣ = −1

2
(ρ+ p) (10)
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Matter Bounce Scenario in f (Q) Gravity

In the geometrical modified theories of gravity the bouncing models are reconstructed based on gravi-
tational theory in this case, the nonmetricity based gravitational theory. The focus would be mainly to
reconstruct a model for which the value of Hubble squared parameter would be,

H2 =
ρm(ρc − ρm)

3ρc
(11)

This is to mention here that the same equation can be realised from the holonomy corrected Friedmann
equations in the context of LQC for a matter-dominated Universe9. The matter energy density and critical
energy density are represented respectively as ρm and ρc . Also, the critical energy density,

ρc = (c2
√
3)/(32π2γ3GN l

2
p ), (12)

where, γ = 0.2375 and lp =
√
ℏGN/c3 are respectively the Barbero-Immirzi parameter and the Planck

length. We use the Planck units, c = ℏ = GN = 1.

9J. Haro, J. Amoros, JCAP, 12, 031 (2014).
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Matter Bounce Scenario in f (Q) Gravity

From eqn.(11), it can be inferred that when the matter energy density reaches to its critical value, H2 = 0,
which shows the occurrence of a bounce. Now, in the matter bounce scenario with zero pressure, the
continuity equation and the energy density can be written as,

ρ̇m = −3Hρm and ρm = ρm0a
−3 (13)

Motivated from the LQC, the bounce cosmology has been appealing in the sense that it can produce as
a cosmological solution to the LQC theory. Now, the scale factor, a(t) ∝ t2/3 for the matter dominated
case.

ρm =
ρc(

3
4ρct

2 + 1
) , H(t) =

2ρct

3ρct2 + 4
, a(t) =

(
3

4
ρct

2 + 1

) 1
3

(14)
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Matter Bounce Scenario in f (Q) Gravity

H2 =
ρc
3

(
1

a3
− 1

a6

)
(15)

Using the relation between the e-folding parameter and the scale factor, e−N = a0
a , eqn. (15) becomes,

H2 =
ρc
3a30

(
e−3N − e−6N

a30

)
(16)

We assume following quantities,

A =
ρc
3a30

, b =
1

a30
. (17)

From eqn. (16), the nonmetricity scalar in the form of e-folding parameter as,

Q = 6A
[
e−3N − be−6N

]
(18)

On solving,

N = −1

3
Log

(
3A+

√
9A2 − 6AbQ

6Ab

)
(19)
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Matter Bounce Scenario in f (Q) Gravity

In addition, we assume that the matter energy density (9) is of form,

ρm =
∑
i

ρi0a
−3(1+ωi )
0 e−3N(1+ωi ) (20)

By setting Si = ρi0a
−3(1+ωi )
0 , the matter energy density becomes

ρm =
∑
i

Si

(
3A+

√
9A2 − 6AbQ

6Ab

)(1+ωi )

(21)

Substituting eqn. (21) in eqn. (9), we get

QfQ − 1

2
f −

∑
i

Si

(
3A+

√
9A2 − 6AbQ

2Ab

)(1+ωi )

= 0 (22)

We consider the Universe is filled with dust fluid only, from eqn. (13), the value of matter-energy
density at t = 0 as,

QfQ − 1

2
f −

(
ρc +

√
ρc(ρc − 2Q)

2

)
= 0 (23)
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Matter Bounce Scenario in f (Q) Gravity

On solving, we get

f (Q) = −
√
ρc(ρc − 2Q)−

√
2ρcQ arcsin

(√
2
√
Q

√
ρc

)
− ρc , (24)

� The above form of f (Q) produces the matter bounce evolution of the Universe.

� The late-time acceleration of the Universe epoch is ensured by the diminishing trend of the cosmic
Hubble radius as shown in FIG.
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Phase Space Analysis

The general form of f (Q) as Q + ψ(Q) and accordingly,

3H2 = ρ+
ψ

2
− QψQ (25)

2Ḣ + 3H2 = −p − 2Ḣ(2QψQQ + ψQ) +

(
ψ

2
− QψQ

)
(26)

The density parameters for the matter dominated, radiation dominated and dark energy phase are respec-
tively denoted as, Ωm = ρm

3H2 , Ωr = ρr

3H2 and Ωde = ρde

3H2 with Ωm + Ωr + Ωde = 1. Hence the effective
equation of state parameter and the equation of state due to dark energy take the form.

ωeff = −1 +
Ωm + 4

3Ωr

2QψQQ + ψQ + 1
(27)

ωde = −1 +
4Ḣ(2QψQQ + ψQ)

ψ − 2QψQ
(28)

B. Mishra (BITS-Pilani, Hyderabad) The 8th Conference of Polish Society on Relativity Sept 19,2022 16 / 25



Phase Space Analysis

The general form of f (Q) as Q + ψ(Q) and accordingly,

3H2 = ρ+
ψ

2
− QψQ (25)
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Phase Space Analysis

We consider the dimensionless variables,

x =
ψ − 2QψQ

6H2
y =

ρr
3H2

. (29)

The autonomous dynamical system,

x ′ = −2
Ḣ

H2
(ψQ + 2QψQQ + x) (30)

y ′ = −2y

(
2 +

Ḣ

H2

)
, (31)

With an algebraic manipulation, we can obtain the relation,

Ḣ

H2
= −1

2

(
3− 3x + y

2QψQQ + ψQ + 1

)
(32)
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Phase Space Analysis
If we compare the f (Q), then ψ(Q) can be represented as,

ψ(Q) = −
√
ρc(ρc − 2Q)−

√
2ρcQ arcsin

(√
2
√
Q

√
ρc

)
− ρc − Q (33)

and
2QψQQ + ψQ = − ρc√

ρc(ρc − 2Q)
− 1 (34)

Now the dimensionless variables can be represented as,

x ′ = x (3(x − 1)− y) (35)

y ′ = −y(x(−3x + y + 4) + y − 1)

x − 1
(36)

The effective EoS and deceleration parameter in terms of the dynamical variables,

ωeff = −1 +
(x + 1)(3x − y − 3)

3(x − 1)
(37)

q = −1 +
(x + 1)(3x − y − 3)

2(x − 1)
(38)
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Phase Space Analysis
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B(0, 1) 0 1 0 1/3 1 {-4,1} Unstable
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Scalar Perturbation
The first order perturbation in the FLRW background with the perturbation geometry functions δ(t)
and matter functions δm(t) can be expressed as,

H(t) → Hb(t)(1 + δ(t)), ρ(t) → ρb(t)(1 + δm(t)) (39)

The perturbation of the function f (Q) and fQ can be calculated as,

δf = fQδQ, δfQ = fQQδQ, (40)

Neglecting higher power of δ(t), the Hubble parameter becomes,

6H2 = 6H2
b (1 + δ(t))2 = 6H2

b (1 + 2δ(t)) (41)

and subsequently

Q(2QfQQ + fQ)δ = ρδm, (42)

which gives the relation between the matter and geometric perturbation and the perturbed Hubble
parameter can be realised from eqn.(37). Now, to obtain the analytical solution to the perturbation
function, we consider the perturbation continuity equation as,

δ̇m + 3H(1 + ω)δ = 0 (43)
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Scalar Perturbations

From eqns. (42)-(43), the first order differential equation can be obtained,

δ̇m +
3H(1 + ω)ρ

Q(2QfQQ + fQ)
δm = 0 (44)

Further using the tt-component field equation and eqn. (44), the simplified relation can be obtained,

δ̇m − Ḣ

H
δm = 0, (45)

which provides δm = C1H, where C1 is the integration constant. Subsequently from eqn. (43), we obtain

δ = C2
Ḣ

H
(46)

where, C2 = − C1

3(1+ω) . The evolution behaviour of δ and δm are given in FIG.
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H
δm = 0, (45)

which provides δm = C1H, where C1 is the integration constant. Subsequently from eqn. (43), we obtain

δ = C2
Ḣ
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Figure: Evolution of Hubble parameter and the energy density in cosmic time.

At the beginning both the deviations, δ(t) and δm(t), have some increment before declining through time
and approaching zero at late times. As a result, we can say that though at the beginning the model
shows unstable behaviour for a brief period, but in most of the time it shows stable behaviour under the
scalar perturbation approach.
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Conclusion

� The matter bounce scenario of the Universe has been reconstructed in an extended symmetric teleparallel
gravity; a specific form of f (Q) has been obtained that shows the matter bounce scenario.

� As expected, the model fails to explain the dark energy era, which has been observed from the dynamical
stability analysis.

� From the critical points, the eigenvalues and the corresponding cosmology are obtained. Two critical
points are obtained, one provides stable node and the other one unstable. The positive deceleration
parameters show the decelerating Universe, occurred at early Universe.

� To check the stability of the reconstructed model, the deviation of the Hubble parameter and the energy
density in cosmic time, it has been observed that both the deviations (i.e., δ(t) and δm(t)) approaching
zero at late times.

� Further study can be carried out on the reconstructed form of f (Q), which may give some more results
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