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κ-Minkowski spacetime and momentum space picture

Non-commutative coordinates: [x̂0, x̂i] = i
κ x̂

i (an(3) algebra)

Physical insight:
[
1
κ

]
= L. However, this κ-deformed theory is

intended as an effective theory modelling quantum gravitational
effects =⇒ 1

κ ≈ lp. κ!∞ gives the ”classical” limit.

x̂0 = − i

κ

 0 0 1
0 0 0
1 0 0

 x̂ =
i

κ

 0 ϵ T 0
ϵ 0 ϵ
0 −ϵ T 0



êk = eikix̂
i
eik0x̂

0 ∈ AN(3)  Time to the right + dim.ful

eAx̂ =
∞∑
n=0

(Ax̂)n

n!
 Definition of exp
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κ-Minkowski spacetime and momentum space picture

êk =


p̄4
κ

k
κ

p0
κ

p
κ 1 p

κ

p̄0
κ −k

κ
p4
κ


p0 = κ sinh

k0
κ

+
k2

2κ
ek0/κ

pi = kie
k0/κ

p4 = κ cosh
k0
κ

− k2

2κ
ek0/κ

Notice that êk ⇔ (p0, pi, p4)
T and if O = (0, . . . , 0, κ)T then

(p0, pi, p4)
T = êkO

−p20 + p2 + p24 = κ2, p4 > 0, p+ := p0 + p4 > 0
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κ-Minkowski spacetime and momentum space picture

Notice: both the kA and the pA can be interpreted as
coordinates in (intrinsically curved) momentum space, and their
sum is now non-trivial.

êkêl := êk⊕l  Group property

(k ⊕ l)0 = k0 + l0

(k ⊕ l)i = ki + e−k0/κli

(p⊕ q)0 =
p0
κ
q+ +

pq

p+
+

κ

p+
q0

(p⊕ q)i =
pi

κ
q+ + qi

(p⊕ q)4 =
p4
κ
q+ − pq

p+
− κ

p+
q0

For similar reasons, −(.) 7! S(.) with p⊕ S(p) = S(p)⊕ p = 0.
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κ-Minkowski spacetime and momentum space picture

Why p and not k? Using p, we can now work in a commutative
spacetime.

In particular, using an object called Weyl map, one can send a
group element êk into a canonical plane wave ep

W(êk) = ep ep = eipµx
µ
= ei(ωt−px)

W(êk⊕l) = ep(k)⊕q(l) = ep ⋆ eq

This ⋆ product is in general non-commutative.
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Action, EOM, and fields

Because of the star product we have two possible orderings
=⇒ two possible actions.

S1 =

∫
R4

d4x (∂µϕ)† ⋆ (∂µϕ)−m2ϕ† ⋆ ϕ

S2 =

∫
R4

d4x (∂µϕ) ⋆ (∂
µϕ)† −m2ϕ ⋆ ϕ†.

Therefore

S =
1

2

∫
R4

d4x [(∂µϕ)† ⋆ (∂µϕ) + (∂µϕ) ⋆ (∂µϕ)
†

−m2(ϕ† ⋆ ϕ+ ϕ ⋆ ϕ†)]
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Action, EOM, and fields

How to compute the EOM? Usually, one uses integration by
parts. Here, however, the Leibniz rule for derivatives does not
work!

i(p⊕ q)µep⊕q = ∂µ(ep ⋆ eq) = (∂µep) ⋆ eq + ep ⋆ ∂µeq

= i(p+ q)ep⊕q

Instead, more complicated rules need to be applied. Example:

∂0(ϕ ⋆ ψ) =
1

κ
(∂0ϕ) ⋆ (∆+ψ) + κ(∆−1

+ ϕ) ⋆ (∂0ψ) + i(∆−1
+ ∂iϕ) ⋆ (∂iψ)
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Action, EOM, and fields

After some computations, we obtain the following equations of
motion

(∂†µ(∂
µ)† −m2)ϕ† = 0 (∂µ∂

µ −m2)ϕ = 0

The field satisfies the Klein-Gordon equations. (Notice: in

momentum space, ∂†µ(∂µ)† ↔ S(p)µS(p)
µ = pµp

µ ↔ ∂µ∂
µ)

Any complex scalar field satisfying these eom can be written as

ϕ(x) =

∫
d3p√
2ωp

ξ(p)ap e
−i(ωpt−px)

+

∫
d3p∗√
2|ω∗

p|
ξ(p)b†p∗ ei(S(ω

∗
p)t−S(p∗)x)
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Properties of the fields under C, P , T
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Properties of the fields under C, P , T

How do κ-deformed fields transform? P and T can consistently
be defined as acting like in the undeformed case (they leave
[x̂0, x̂i] = i

κ x̂
i invariant)

T ϕ(t,x)T −1 = ϕ(−t,x) =⇒ T apT −1 = a−p

Pϕ(t,x)P−1 = ϕ(t,−x) =⇒ PapP−1 = a−p

Because of the presence of the antipode S() in the fields and
because of the form of the action, also C can be shown to
behave like in the undeformed case (in its action on a, a†, b, b†)
when acting on fields.

Cϕ(t,x)C−1 = ϕ(t,x)† =⇒ CapC−1 = bp∗

The action is manifestly invariant under C,P, T and under
(deformed) Lorentz transformations.
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We need the charges. How to get them?

• Using the Noether theorem. However, difficult
computations (recall integration by parts), so only the
translational charges are easily obtainable in this way;

• More pragmatic approach: use the canonical formalism
(Noether theorem) to compute translational charges, then
switch to covariant phase space formalism for the others.
Keep in mind, a kind of ”matching” is necessary!
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General charges, how to compute them, and properties
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Geometric approach to conserved charges

How to compute a general charge of a given theory? As
previously said, we will now concentrate on the more general
case: geometric approach.

Assuming that the charges come from a symmetry described by
some continuous vector field ξ in spacetime, then

−δξ⌟Ω
!
= δQξ

where δ is the exterior derivative in phase space, Qξ is the
charge associated to the vector ξ. δξA measures the
infinitesimal variation of the object A in phase space due to the
symmetry of the action along ξ in spacetime.
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Deformed case: translations

We now start from the following transformations describing
time translations.

δTap = iϵµpµap, δTa†p = iϵµS(p)µa
†
p,

δT b†p = iϵµS(p)µb
†
p, δT bp = iϵµpµbp.

Notice the antipode. Therefore, a naive application of the
previous procedure would not give a consistent result (no
quantity Qξ such that −δξ⌟Ω = δQξ). ”Matching” with the
direct computation needed! We will need to introduce the
antipode in the contraction of a vector field with a 2-form.
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Deformed case: translations

We postulate the following rule

δξ⌟ (δa
†
p ∧ δap) = (δξa

†
p)δap + δa†p[S(δξ)ap]

which solves the issue

ΩU = i

∫
d3pα (δap ∧ δa†p − δb†p∗ ∧ δbp∗)

− δT ⌟Ω

= i

∫
d3pα (δTa†pδap + δa†pS(δ

T )ap − δT bpδb
†
p − δbpS(δ

T )b†p)

= −ϵµδ
(∫

d3pα [S(p)µa
†
pδap − pµb

†
pδbp

)

Pµ =

∫
d3pα [−S(p)µa†pap + pµb

†
pbp],
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Deformed case: boosts

In the case of boosts, we need to assume the following
transformations for the creation/annihilation transformations

δBap = −iλj ωp

[
∂

∂pj
+

1

2

1

ωp

∂[ωpS(α)]

∂pj

]
ap,

δBa†p = −iλj S(ωp)

[
∂

∂S(p)j
+

1

2

1

S(ωp)

∂[S(ωp)α]

∂S(p)j

]
a†p,

δBbp = −iλj ωp

[
∂

∂pj
+

1

2

1

ωp

∂[ωpα]

∂pj

]
bp,

δBb†p = −iλj S(ωp)

[
∂

∂S(p)j
+

1

2

1

S(ωp)

∂[S(ωp)S(α)]

∂S(p)j

]
b†p,
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Charges

For the boosts, we obtain the charge

Ni = −1

2

∫
d3pα

{
S(ωp)

[
∂a†p

∂S(p)i
ap − a†p

∂ap
∂S(p)i

]

+ ωp

[
bp
∂b†p
∂pi

− ∂bp
∂pi

b†p

]}
.

Notice: all the deformed charges satisfy the undeformed
Poincaré algebra (checked by direct tedious computations).

However, the transformations of the creation/annihilation
operators related to the above boost charge now correspond to
a non-trivial transformation of the field.
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Charges

If we translate the creation/annihilation operators
transformations in terms of the field we get (at first order in
1/κ)

δBϕ(x) = iλi x
i ∂

∂t
ϕ(x)

− iλi

∫
d3p√
2ωp

{
pi

κ

(
m2

4ω2
p

− 1

2

)
ape

−i(ωpt−px)

+
pi

κ

(
− m2

4ω2
p

− 1

)
b†pe

−i(S(ωp)t−S(p)x)

}
,

Analogous relation for ϕ†, which means that particles and
antiparticles receive an additional shift under boost.
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Relation between CPT and boost charges

One has therefore a set of charges (translations, rotations,
boosts) which leave the action invariant, together with discrete
symmetries C,P, T which do the same. All of these have been
explicitly computed.
However, non trivial relations between them arise! One can
show that

[Ni, C] ̸= 0

This translate (for example) into a difference of decay times for
particles and antiparticles in a boosted frame.
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Conclusion and future works
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Conclusions and future works

• We have seen that particles and antiparticles behave
differently. Possible experimental signature of this fact,
particularly from [Ni, C] ̸= 0.

• We have a well defined theory =⇒ propagator and
n-point functions.

• Issue of the loop computations: non-planar vertices are
difficult to evaluate. Possible solution: use group field
theory formalism and braiding (see yesterday talk by T.
Trześniewski in a different context).

• Immediate generalization: higher spin.
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Thank you
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One particle states
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One particle states

We now have all the tools to show that indeed particles and
antiparticles behave differently.

How to see it?

• Since we have the translation charges (i.e. the operators
Pµ), we can apply them to the a-particle and b-particle
states and get their eigenvalues. We will see that they are
different;

• Use C to link the a-particle to the b-particle state. We will
see that C switches a particle with its antiparticle with
different momentum.
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One particle states

Define the vacuum by ap|0⟩ = bp∗|0⟩ = 0. We then define
one-particle and one-antiparticle state by

a†p|0⟩ := |p⟩a b†p∗|0⟩ := |p⟩b

Now we want to know Pµ|p⟩a and Pµ|p⟩b.

Andrea Bevilacqua
κ-deformed complex fields, (discrete) symmetries, and charges 12

27 / 30



One particle states

[
ap, a

†
q

]
=

1

α
δ(p− q)

Pi|q⟩a =

∫
d3pα

{
−a†p ap S(p)i + b†p∗ bp∗ pi

}
a†q|0⟩

=

∫
d3pα

{
−a†p

1

α
δ(p− q)S(p)i + a†p a

†
qap pi

}
|0⟩+ 0

= −S(q)i|q⟩a
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One particle states

Doing the same thing for all Pµ we have

Pi|p⟩a = −S(p)i|p⟩a Pi|p⟩b = pi|p⟩b

P0|p⟩a = −S(ωp)|p⟩a P0|p⟩b = ωp|p⟩b

Notice: p ̸= −S(p) and ωp ̸= −S(ωp), but pµp
µ = m2 and

S(p)µS(p)
µ = m2, so a-particle and b-particle have same mass.
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One particle states

We can use C to relate |p⟩a and |p⟩b

C|p⟩b = Cb†p∗C−1C|0⟩ = a†p|0⟩ = |p⟩a

Very easy steps due to the simplicity of the C transformation of
our deformed field!

Therefore C (and CPT) transforms a particle into an
anti-particle with different momentum, and vice versa.
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