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Introduction, action, and fields




k-Minkowski spacetime and momentum space picture

Non-commutative coordinates: [£°,#/] = L&' (an(3) algebra)

Physical insight: [%] = L. However, this k-deformed theory is

intended as an effective theory modelling quantum gravitational

effects — % ~ l,. k — oo gives the "classical” limit.
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k-Minkowski spacetime and momentum space picture

Non-commutative coordinates: [£°,#/] = L&' (an(3) algebra)

Physical insight: [%] = L. However, this k-deformed theory is
intended as an effective theory modelling quantum gravitational

effects — % ~ l,. k — oo gives the "classical” limit.
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< Definition of exp
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k-Minkowski spacetime and momentum space picture

Bk po ko k2
. 0 :
L K K po = rsinh — + ——eko/”
K 2K
. k
=\ 2 1 % pi = kil
_ k k2
Po  _k pa Py = )i cosh — — —¢ko/s
K K K K 2K

Notice that éx < (po,pi,ps)? and if O = (0,...,0,x)T then

(pos pi,pa)” = 6,0

—pg+pP +pi=r% pa>0, pyi=po+ps>0
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k-Minkowski spacetime and momentum space picture

Notice: both the k4 and the p4 can be interpreted as
coordinates in (intrinsically curved) momentum space, and their
sum is now non-trivial.

éré; :=érgr <«  Group property

(k@ 1)o=ko+lo
(k@ l); = ki + e R/,
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k-Minkowski spacetime and momentum space picture

Why p and not k7 Using p, we can now work in a commutative
spacetime.

In particular, using an object called Weyl map, one can send a
group element é;, into a canonical plane wave e,

W(ék) =ep ep = eipu;cl‘ _ ei(wt—px)
W(ék@l) = ep(k)EBq(l) —= ep * eq

This * product is in general non-commutative.
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Action, EOM, and fields

Because of the star product we have two possible orderings
= two possible actions.

Su= [ ' @)1 (0,0) =m0
So= [ ' (0,0)%(0"0) —mox .

Therefore

S= % / iz [0 6)! * (0,0) + (876) * (9,0)!
R4
—m%(¢f ¢+ ¢ x ¢T)]
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Action, EOM, and fields

How to compute the EOM? Usually, one uses integration by
parts. Here, however, the Leibniz rule for derivatives does not
work!

i(p© q)uepeq = Oulep* eq) = (Ouep) * eq + ep x Opey

=1i(p+ q)epaq

Instead, more complicated rules need to be applied. Example:

00(6 %) = —(300) * (D) + K(A716) x (O09) +i(A0,0) x (010)
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Action, EOM, and fields

After some computations, we obtain the following equations of
motion

@ (") —=m*)ef =0 (0,0 —m?)¢ =0

The field satisfies the Klein-Gordon equations. (Notice: in
momentum space, (9;5(8“)T = S(p)S)* = pup" < 0,0")
Any complex scalar field satisfying these eom can be written as

¢(z) = E(p)ap e~ rt =P
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Properties of the fields under C, P, T
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Properties of the fields under C', P, T'

How do k-deformed fields transform? P and 7' can consistently
be deﬁned'as acting like in the undeformed case (they leave
[2°,&'] = L2 invariant)
Tot,x)T ' =¢(~t,x) = TapT '=a_p
Pot,x)P ' =p(t,—x) = PapP '=a_,
Because of the presence of the antipode S() in the fields and
because of the form of the action, also C' can be shown to

behave like in the undeformed case (in its action on a,a',b, b?)
when acting on fields.

Cot,x)C 1 =o(t,x)] = |CapC' = bp-

The action is manifestly invariant under C, P,T and under
(deformed) Lorentz transformations.
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We need the charges. How to get them?

e Using the Noether theorem. However, difficult
computations (recall integration by parts), so only the
translational charges are easily obtainable in this way;
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We need the charges. How to get them?

e Using the Noether theorem. However, difficult
computations (recall integration by parts), so only the
translational charges are easily obtainable in this way;

® More pragmatic approach: use the canonical formalism
(Noether theorem) to compute translational charges, then
switch to covariant phase space formalism for the others.
Keep in mind, a kind of ”matching” is necessary!
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General charges, how to compute them, and properties




Geometric approach to conserved charges

How to compute a general charge of a given theory? As
previously said, we will now concentrate on the more general
case: geometric approach.
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Geometric approach to conserved charges

How to compute a general charge of a given theory? As
previously said, we will now concentrate on the more general
case: geometric approach.

Assuming that the charges come from a symmetry described by
some continuous vector field £ in spacetime, then

—0ea Q=60

where § is the exterior derivative in phase space, Q¢ is the
charge associated to the vector £. d¢A measures the
infinitesimal variation of the object A in phase space due to the
symmetry of the action along & in spacetime.
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Deformed case: translations

We now start from the following transformations describing
time translations.

(5Tap = ie'puap, 5TaL = ie“S(p)Ma;f),
570l = ie"S(p)ubl,  6bp = i€'pubp.

Notice the antipode. Therefore, a naive application of the
previous procedure would not give a consistent result (no
quantity Q¢ such that —6¢1Q = 6Q¢). "Matching” with the
direct computation needed! We will need to introduce the
antipode in the contraction of a vector field with a 2-form.
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Deformed case: translations

We postulate the following rule
J¢o (6al, A dap) = (d¢al)dap + dal[S(6¢)ap)
which solves the issue

Qv =i / d*pa (dap A Saf, — 8bL. A dbp)

L)
=i / d*pa (T aldap + 6al,S(67 )ap — 67 bpobl, — 0bpS(57)bY)

= —€eM§ </ dpa [S(p)ua;rﬁap —pﬂbLébp)

Py = /d3pa[—S(p)#aLap —i—p#bz)bp],
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Deformed case: boosts

In the case of boosts, we need to assume the following
transformations for the creation/annihilation transformations

N 0 1 1 OlwpS(a)]
5Bap = —Z>\j (A)p I:alj)] iwipapilj)] ap7
N [0 1 1 0[S(wp)a]
Bt _ _i\J - p T
Op = =N S | 5510y T 2 5(wp) 05(Y | P
N 3} 1 1 Olwpa]
§Bbp = —iN wp [8p un 85]‘ ] bp,
\j 0 1 1 09[S(wp)S(a)]
Bt _ - “p T
6°bl, = —iN S(wp) 35(p)7 + 25(wg) 8S(p) b
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For the boosts, we obtain the charge
1 dal da
i=—2 [ d° S P _ap —al P_
V=3 | p“{ ) |35y P 95 (py

i
bp 2 Doy | L
op* Op’

Notice: all the deformed charges satisfy the undeformed
Poincaré algebra (checked by direct tedious computations).

+ wp

However, the transformations of the creation/annihilation
operators related to the above boost charge now correspond to
a non-trivial transformation of the field.
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If we translate the creation/annihilation operators
transformations in terms of the field we get (at first order in

1/k)

Bo(x) =i xi% o(z)

d3 ; 21 ,
o [ {p<m 1) pent o

V/ 2wp K Q

. 2
L Pi <_m _ 1) b, e—z‘(S(w@t—S(p)x)},

2
K 4wp

Analogous relation for ¢!, which means that particles and
antiparticles receive an additional shift under boost.
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Relation between C' PT' and boost charges

One has therefore a set of charges (translations, rotations,
boosts) which leave the action invariant, together with discrete
symmetries C, P,T which do the same. All of these have been
explicitly computed.

However, non trivial relations between them arise! One can
show that

[Ni, C] #0

This translate (for example) into a difference of decay times for
particles and antiparticles in a boosted frame.
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Conclusions and future works

® We have seen that particles and antiparticles behave
differently. Possible experimental signature of this fact,
particularly from [N;, C] # 0.
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Conclusions and future works

® We have seen that particles and antiparticles behave
differently. Possible experimental signature of this fact,
particularly from [N;, C] # 0.

® We have a well defined theory = propagator and
n-point functions.

® [ssue of the loop computations: non-planar vertices are
difficult to evaluate. Possible solution: use group field
theory formalism and braiding (see yesterday talk by T.
Trzesniewski in a different context).

® Immediate generalization: higher spin.
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Thank you




One particle states




One particle states

We now have all the tools to show that indeed particles and
antiparticles behave differently.

How to see it?

® Since we have the translation charges (i.e. the operators
P,.), we can apply them to the a-particle and b-particle
states and get their eigenvalues. We will see that they are
different;
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One particle states

We now have all the tools to show that indeed particles and
antiparticles behave differently.

How to see it?

® Since we have the translation charges (i.e. the operators
P,.), we can apply them to the a-particle and b-particle
states and get their eigenvalues. We will see that they are
different;

e Use C to link the a-particle to the b-particle state. We will
see that C switches a particle with its antiparticle with
different momentum.
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One particle states

Define the vacuum by ap|0) = bp.|0) = 0. We then define
one-particle and one-antiparticle state by

ab0) == [p)a  b5,10) = |p)s

Now we want to know P,|p)q and P,|p)s.
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One particle states

Pild)e = /dSPOé {—GL ap S(P)i + bL* bp* pi} al,|0)

1
= /d3pa {_“I) E(S(p -q)S(p)i + aI, a:gap pi} |0) +0

= —S(q)ilq)a
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One particle states

Doing the same thing for all P, we have

Pilp)a = —=S(P)ilP)a  PilP)s = PilP)s
Polp)a = =S(wp)IlP)a  PolP)o = wp|P)o

Notice: p # —S(p) and w, # —S(wp), but p,p* = m? and
S(p)S(p)* = m?, so a-particle and b-particle have same mass.
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One particle states

We can use C to relate |p), and |p)s
Clp)s = Cb,.CT'C|0) = a}|0) = |P)a

Very easy steps due to the simplicity of the C' transformation of
our deformed field!

Therefore C (and CPT) transforms a particle into an
anti-particle with different momentum, and vice versa.
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