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Introduction

There are as many quantization methods as quantum physicists
:)

Physical degrees of freedom of a physical system:
‚ Phase space is of dimension 2N, N=number of degrees of
physical degrees of freedom.

‚ Con�guration space is of dimension N (classical and
quantum description).

‚ To treat time on the same footing as other coordinates it
should be considered as an additional physical degree of
freedom.

‚ The �con�guration space�/�phase space� should contain time
as a variable.
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Some Quantizations 1/4

Arbitrary choice of quantization methods !

(C) Old canonical quantization

Θ : CM Ñ QM (CM=classical model, QM=Quantum model):

Θptf, guq “
1

i~
rΘpfq,Θpgqs

‚ There is no reasonable quantization map satisfying the
above identity exactly for all classical functions f, g
(Groenewold theorem).

‚ Problem of the operators ordering.
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Some Quantizations 2/4

(S) Star product quantization:

f ‹ g “ f ¨ g ` pi~qC1pf, gq `
8
ÿ

n“2

pi~qnCnpf, gq

C1pf, gq “
1

2
tf, gu

Θpfq ¨Θpgq “ Θpf ‹ gq

‚ Di�erent choices of the ‹-products cover very large class of
quantization methods.
The mapping Q : CM Ñ QM is given by
Θpfq ¨Θpgq “ Θpf ‹ gq

‚ Groenewold objection and the ordering problem still valid.
https://arxiv.org/abs/quant-ph/0208163v1, Dirac, von Neuman,
Groenewold, Gerstenhaber,... 5 / 31



Some Quantizations 3/4

(O) Huge amount of quantization methods, only a few
of them:
..., perturbatively quantized gravity, geometrodynamical
canonical quantization, the Wheeler-Dewitt equation, path
integrals, the Euclidean path integral approach of Hawking,
Penrose twistor theory, string theory, asymptotically safe gravity,
causal dynamical triangulation, emergent gravity, loop quantum
gravity, ...
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Some Quantizations 4/4

(D) Deformation of a measure as a quantization
method:
Overcomplete sets, coherent states, POVM, di�erent kinds of
integral quantizations (Berezin, Klauder, Gazeau, Piechocki,
Bergeron, ...).
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State space of a physical system

CONSTRUCTION
of the STATE SPACE

‚ The Quantum Motions Algebras QMA(G) described below
allow to construct directly quantum models which
con�guration/phase space can be parametrized by the group
of motions G.

‚ As a quantization approach QMA(G) belongs to the class
(D= Deformation of a measure) of the quantization
methods.

AG., A. P¦drak, in preparation.
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QMA(G)= QMA'(G)+QMA�(G)

S P QMApGq is a pair of two complex functions GÑ C: the
function f P L1pG, dµpgqq and the discrete function qτ P l1pGq:

S :“ f ` qτ ” qτ ` f, Spgq :“ fpgq` qτpgq

pS1 ` S2qpgq :“ pf1 ` f2qpgq` pqτ1 ` qτ2qpgq

The symbol ` is interpreted as additive operation in QMApGq and in QM
means �quantum interference� of both elements.

` separate numerical values of L1pG, dµpgqq and l1pGq functions.

Multiplication

The multiplication in QMA(G) is de�ned as the convolution.

QMA(G) algebra is isomorphic to a subalgebra of measures on G.
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QMA(G)
The composition rules:

pf1 ˝ f2qpgq :“

ż

G

dµphqf1phqf2ph
´1gq

pqτ1 ˝ qτ2qpgq :“
ÿ

hPG

qτ1phqqτ2ph
´1gq

pqτ ˝ fqpgq :“
ÿ

hPG

qτphqfph´1gq

pf ˝ qτqpgq :“
ÿ

hPG

∆Gph
´1
qfpgh´1

qqτphq

The involution operation is de�ned as

f 7pgq :“ ∆Gpg
´1
qfpg´1

q
‹

qτ 7pgq :“ qτpg´1
q
‹
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Wave packets realization of QMA(G)

Ŝ “

ż

G

dµpgqfpgqT pgq `
ÿ

gPG

τpgqT pgq ,

T pgq represents here a unitary representation (action) of the
group G in the state space Kphys.
The discrete sum over the group ensures (it is important in
physical applications) that the state from which the quantum
state space is generated also belongs to this state space, though
it is not always needed.
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State space, GNS construction

Elementary probability amplitude (positive function, metastate):

xρ; y : GÑ C
xρ; gy “ Trpρgq where ρ is the density operator

Extension to the full algebra

xρ;Sy “ xρ; f ` qτy “

ż

G

dµpgqfpgq xρ; gy `
ÿ

gPG

qτpgq xρ; gy

The module of zero elements:

Iρ :“
 

z P QMApGq :
@

ρ;R7 ˝ z
D

“ 0, for all R P QMApGq
(
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State space, GNS construction
Physical state space: K “ QMApGq{Iρ (quotient space) with the
scalar product

xS1|S2y :“
A

ρ;S71 ˝ S2

E

xg1|g2y “

A

ρ; g71 ˝ g2

E

,

E.g.,

xf2|f1y “

ż

G

dµpg2q

ż

G

dµpg1qf2pg2q
‹
@

ρ; g´1
2 g1

D

f1pg1q

Every state |Sy “ S|eGy can be generated from the single state
|eGy, where eG P G is the group neutral element.

The set of states |gy “ g|eGy, g P G is overcomplete.
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State space, interpretation (?)

Quantum spacetime states
‚ The vector |eGy is the cyclic (�ducial) vector in the algebra
QMA(G).

‚ The above means that every state of the spacetime
belonging the state space K can be written as |Sy “ S|eGy,
where S P QMApGq.

‚ The scalar product xS2|S1y represents the transition
probability amplitude between quantum spacetime states
|S1y Ñ |S2y.

14 / 31



State space, interpretation

Special spacetime states
‚ (H) The set of states t|gy “ g|eGyu represents the degenerate
vacuum state of the spacetime (or in general, the quantum
representation of the con�guration/phase space).

‚ The states |gy “ g|eGy can be seen as the �quantum
spacetime points�.

‚ Every spacetime state can be expressed as a generalized
linear combinations of the quantum spacetime points |gy.

‚ Every unitary transformation mapping t|gy “ g|eGyu into a
new overcomplete set gives another equivalent set of the
vacuum spacetime states (probably much larger set of
transformations leads to the same conclusion).
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Quantization

COHERENT STATE
QUANTIZATION
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QMA1pGq Ă QMApGq
If the metastate xρ; y leads to an irreducible representation, then

1

Aφ

ż

G

dµpgq|gyxg| “ 1̂1

MpΩq :“
1

Aφ

ż

Ω

dµpgq|gyxg|, where Ω Ă G, imprimitivity, covariance

If the metastate xρ; y do not leads to an irrep:

A) This can be interpreted as lack of important properties of
the spacetime points vacuum states. One can to extend the
group of motion G and the corresponding metastate xρ; y to
larger group to obtain irreducible representation.

B) The metastate can be decomposed into irreducible
components and create decomposition of �unity� for every
component independently.

C) The decomposition of unity can be postponed. 17 / 31



CS quantization
Let χ : CCS Ñ G, one-to-one mapping,
where CCS =Classic Con�guration Space/ Phase Space.
CS quantization of the classic function fpqq “ fpχ´1pgqq:

f̂ :“ lim
ÿ

k

fpχ´1
pgkqqMpΩkq “

1

Aφ

ż

G

dµpgq|gyfpχ´1
pgqqxg|

where gk P Ωk Ă G and
Ť

k Ωk “ G.

The quantum operator f̂ modi�es amplitudes of decomposition
of the spacetime state Ψ into vacuum spacetime points giving a
new state Ψ1 of the spacetime

|Ψ1
y “ f̂ |Ψy “

1

Aφ

ż

G

dµpgqxg|Ψyfpχ´1
pgqq|gy
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CS quantization

1st non-uniqueness
The CS quantization is dependent on parametrization of the
group G, i.e., on a choice of the mapping χ : CCS Ñ G .
A.G., W. Piechocki, T. Schmitz, Eur. Phys. J. Plus(2021) 136:18

2nd non-uniqueness

There is a freedom in �xing the element χpqq “ eG of the map χ
from the classic con�guration space to the group parameters
space.
A.G., A. P¦drak, W. Piechocki, Class. Quantum Grav. 39 (2022) 145005
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Time as an observable

QUANTUM TIME
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Time as an observable

Time
Quantum Gravity and also Quantization of Gravity require time
to be considered on the same footing as other observables.

Quantum time
Quantum time should be a part of the spacetime position
quantum observable.

Possible solution:

Projection evolution, PEv
A.G., M. Gó¹d¹ and A. P¦drak, Projection evolution of quantum
states, arXiv:1910.11198v2 [quant-ph]
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Projection evolution

The changes principle:
The evolution of a system is a random process caused by the
spontaneous changes in the Universe.

The projection evolution operators at the evolution step τn are
de�ned as a family of transformations:
F|pτn; ν, ¨q : T `1 pKpτn´1qq Ñ T `pKpτnqq, where
T `pKpτnqq is the quantum state space at the evolution step τn.

τn enumerates subsequent changes of quantum states �
it is a global parameter � it is not TIME !

Quantum time
PEv approach requires to treat time as a quantum observable,
i.e., quantum time is considered on the same footing as other
degrees of freedom.

Projection evolution of quantum states, A.G, M. Gó¹d¹, A. P¦drak,

arXiv:1910.11198v2 [quant-ph] 25 Mar 2020
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Projection evolution, chooser
The generalized Lüders projection postulate is proposed as the
principle for the evolution (chooser):

ρpτn; νnq “
F|pτn; νn, ρpτn´1; νn´1qq

Tr pF|pτn; νn, ρpτn´1; νn´1qqq
.

Probability distribution
The probability distribution for the chooser is given by the
quantum mechanical transition probability from the previous to
the next state.
This probability for pure quantum states is determined by the
appropriate probability amplitudes in the form of scalar
products. The transition probability among mixed states remains
an open problem.

F| are some quantum operations, e.g., K. Krauss: States, E�ects and

Operations: Fundamental Notions of Quantum Theory, Springer Verlag 1983

.
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Main ingredients

Elementary quantum observables
Let us assume the classical spacetime position 4-vector in the
CCS is represented by a set of functions

xµ “ xµpqq, where µ “ 0, 1, 2, 3.

Within the CS quantization the spacetime position four vector
operator is

x̂µ :“
1

Aφ

ż

G

dµpgq|gyxµpχ´1
pgqqxg|

Other quantized observables

f̂ :“ lim
ÿ

k

fpχ´1
pgkqqMpΩkq “

1

Aφ

ż

G

dµpgq|gyfpχ´1
pgqqxg|
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Main ingredients

Spectrum and eigenvectors of the observable A.

Probability related to the measure MApΩq of the
observable A

Prob pρ;A,Ωq “ TrpMApΩqρq

Expectation value of an observable A

xρ;Ay “ TrpÂρq

Variance of an observable A

varpρ;Aq “ TrppÂ´ xρ;Ayq2ρq
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Simpli�cations

PHENOMENOLOGY
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Semiquantal approach

Heuristic method
To not consider the full PEv approach which requires a
construction of the evolution operators one can try, in the �rst
approximation, to search for the states of the spacetime
calculating expectation values of quantized classical observables
and compare them to classical solutions.
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Semiquantal approach
‚ Assume, we have a set of characteristic classical spacetime
observables:
‚ spacetime positions xµ and their quantized versions x̂µ;
‚ ξl “ φlptx

µuq and their quantized versions ξ̂l;

as constraints determining construction of required
spacetime states.

‚ One needs to choose a family of trial states |Ψηy. The set of
parameters η enumerate this family of states.

‚ To determine required approximate states, i.e., to �nd η, one
needs to solve the following system of equations

xΨη; x̂
µ
y “ xΨη|x̂

µ
|Ψηy “ xµ

A

Ψη; ξ̂l

E

“ xΨη|ξ̂l|Ψηy “ φlptx
µ
uq

Note that φlptx
µuq “ φlpxΨη; x̂

µyq

28 / 31



Semiquantal approach
cont.
‚ Having states |Ψηy one can calculate

‚ required probability distributions
‚ expectation values
‚ variances

of remaining observables .

Remarks:
‚ Constraints are reproduced exactly, other quantum
observables can di�er from their classic counterparts.

‚ Calculated variances of constraints show smearing of
quantum observables around their classical values.

‚ Nonzero variances prevent the corresponding quantum
observables to be singular in the points where the classical
observables have singularities.
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SUMMARY
‚ (The group of motions G) + (Elementary probability
amplitude function xρpτq; gy) creates (the τ dependent state
space Kτ which correspond to evolving spacetime).

‚ Quantum evolution is a stochastic process (PEv).
‚ Background independence � in general one has t|τ ; gyu.
‚ Treating the quantum time on the same footing as the other
observables (PEv).

‚ Deformation of quantum measure as the quantization
method (CS).

‚ A possibility of construction of approximate spacetime
states reproducing, to some extend, classical properties of
the spacetime.

‚ Possibility of avoiding of singularities in quantized
description of the spacetime.
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Problems

???
?????????

?????????????????
???????????????????????????

????????????????????????????????????
??????????????????????????????????????????
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