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Introduction: Mixmaster Universe

● Homogeneous model of Early Universe.
Studied by Belinski, Khalatnikov and Lifshitz (BKL) and independently by Misner.

● Oscillatory and Chaotic behaviour close to the initial singularity (Big Bang).

● Random and repeated squeezing and blowing up of spatial directions.
3D Mixing→  Anisotropy.
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Motivation: Why Anisotropy?

● Anisotropic very early universe → Expansion flattens the effect → Isotropy

● More generic model, we need less primordial symmetries.

● Isotropic bouncing models → OK, but slightly blue-tilted spectrum. Can anisotropy improve that? 

● Can anisotropy account for the origin of “depart from explanation” of primordial universe behaviour?
Some observational data [2] suggest anomalies at large scales.

[2] A Durakovica, et al. (2018)  Reconstruction of a direction-dependent 
primordial power spectrum from Planck CMB data, JCAP 1802 



  

Quantum Primordial Universe

● End goal:  Full description of primordial Universe → Quantum description

● Quantization: Replace singularity by quantum bounce.

● Interplay between isotropic and anisotropic variables →   Complex quantum dynamics.

Mathematical description: Hamiltonian formulation  

· Bianchi IX metric:  

} Spatial hypersurface:
S3 topology, Closed universe

Usual parametrization:

with: 

Killing vector:
isometry group generator 

Lapse function

ai (t) : 3 different principal direction
  scale factors (anisotropy)
  

The basis 1-forms satisfy:



  

Mathematical description: Hamiltonian formulation 

3+1 ADM formalism: 

Bianchi IX 3-metric:     + 3-momemtum:Phase space:

Extrinsic curvature:

ai  

Hamiltonian constraint:
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Mathematical description: Hamiltonian formulation 

3+1 ADM formalism: 

Bianchi IX 3-metric:     + 3-momemtum:Phase space:

Extrinsic curvature:

ai  

Hamiltonian constraint:

Using Misner Variables:  

+ Conjugate momenums:

Canonical transformation
 for isotropic variables:

Isotropic geometry Anisotropic variables 

Hamiltonian Constraint in Misner variables (natural units and               ):

Where:

Particle in 3D Minkowski s-t.
with time dependent potential

 (q > 0  always)
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Quantization and semicassical portrait

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



  

Quantization and semicassical portrait

Weyl-Heisenberg group:

rep:

· Anisotropic variables: Full plane

Covariant Weyl-Heisenberg integral quantization:
 

Semiclassical portrait:

Gaussian
weight function{

p 2
± ±β

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



  

Quantization and semicassical portrait

Semiclassical portrait:

p 2
± ±β

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7. 
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



  

Semiclassical portrait of full Hamiltonian constraint

6 quantization
+ semiclassical 

parameters

· Very rich model:
 Let's investigate, numerically, the effects of interplay between anisotropy and quantum bounce.

Hamilton equations:

(we added Radiation)



  

Solution for Isotropic case:

Let's call:

(intrinsic isotropic curvature) (isotropic repulsive strength)

Analytical aproximations for
quantum bounce    and   classical recolapse:

Phase-space solutions:

(for different R radiation contents)

(for simplicity)



  

Full anisotropic solution:

Phase space of isotropic variables:    Asymmetric bounce of the universe, due to 
   increase of the role of anisotropy energy.
   → Extra boost to the post-bounce expansion

Chaotic scenario→  Very sensitive to initial conditions
(+ we have 6 quantization/semiclassical parameters)



 

A realistic initial scenario:

Density parameters of
generalised-Friedmann equation:

Intially (close to the bounce)  we want:

Anisotropic 
Potential term

Anisotropic
Kinetic term

1st: Semiclassical Repulsion dominates →  Expansion

2nd: Anisotropy plays a significant role → non-trivial Asymmetry

3rd: Transition to radiation, matter dominates dynamics.

4th: Classical recolapse.

To be close to the bounce we require:



  

Different examples:

A realistic initial scenario:

Still very different initial values of variables 
and parameters reproduce this starting scenario



  

Inflationary-expansion behaviour?

The Big Question: Can anisotropy make the phase of accelerated expansion to last long enough?

For inflationary scenario:

Friedmann equation:

Driving density term during inflation 
(anisotropy in our model)

Where        :  Power law of our 
      “scale factor” variable q
      for inflationary term(Remember:                   )

This condition translates into: For inflationary behaviour

Increasing # modes leaving
 the horizon (super-Hubble)

Our Friedmann equation:

EANI · q
α

We have to make this potential V increase with 
time initially, close to the bounce, to make this

term decrease slower than q-4/3 during expansion

Specific situation for the system:
Extremal case for inflationary behaviour



  

How to make potential increase?

V(β±) → Very steep triangular walls, with

  flatter central part and 3 canyons.

Length of the (closed) canyons in the vertex

modulated by semiclassical parameter ω±

We throw the particle in the exact direction 
of the canyons to make the value of the 
potential increase for the longest time possible.
Afterwards it will roll down in the opposite direction.

Two important things:

- Small initial q, for smaller Universe 
  the walls are further away → flatter potential.

  With expansion the walls get closer, smaller β± .

- Bigger initial p±  longer time the particle rolling up.

  BUT : p± cannot be such big that it makes 
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(Phase space
evolution)

(Conformal 
Hubble evolution)

e-Folds:



 

(Phase space
evolution)



  

Directional Hubble rates: Inflation in principal directions?

1
2 3

“Directional” inflation



  

Conclusions and Future Investigations:

- Very simple model → Rich dynamics, many possibilities. 

- Solve singularity problem → Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

 



  

Conclusions and Future Investigations:

- Very simple model → Rich dynamics, many possibilities. 

- Solve singularity problem → Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

 BUT:  Might be the seed for future investigations:

  · Generation of gravitational potential?
    · Interplay with primordial perturbations?

  · “Directional” inflation → Amplification by gravitational potential in each direction separately?

_́́a
a

 Gravitational potentials       for other previously studied isotropic models:

Another approach: Full quantum model →
 Maybe semiclassicality erase some features

close to the bounce. Full quantum is more complicated.

[5] J. de Cabo Martin, P. Małkiewicz, and P. Peter, (2021) [arXiv:2111.02963]

Isotropic bouncing models + perturbations give this kind 
of gravitational potential → Generation of cosmological structures.

The primordial spectrum is nearly scale invariant
but slightly blue-tilted → Can anisotropy improve this?

(Does not mean we cannot
generate structures)
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