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Introduction: Mixmaster Universe

« Homogeneous model of Early Universe.
Studied by Belinski, Khalatnikov and Lifshitz (BKL) and independently by Misner.

« Oscillatory and Chaotic behaviour close to the initial singularity (Big Bang).

« Random and repeated squeezing and blowing up of spatial directions.
3D Mixing— Anisotropy.

[1] D. Garfinkle. Of singularities and breadmaking. (2007)
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Motivation: Why Anisotropy?

Anisotropic very early universe — Expansion flattens the effect — Isotropy
More generic model, we need less primordial symmetries.
Isotropic bouncing models — OK, but slightly blue-tilted spectrum. Can anisotropy improve that?

Can anisotropy account for the origin of “depart from explanation” of primordial universe behaviour?
Some observational data [2] suggest anomalies at large scales.

[2] A Durakovica, et al. (2018) Reconstruction of a direction-dependent
primordial power spectrum from Planck CMB data, JCAP 1802



Quantum Primordial Universe

« End goal: Full description of primordial Universe — Quantum description

« Quantization: Replace singularity by quantum bounce.

« Interplay between isotropic and anisotropic variables — Complex quantum dynamics.

Mathematical description: Hamiltonian formulation

- Bianchi IX metric:

9 . Spatial hypersurface:
= —N dr? —I— S’topology, Closed universe

) ’ Usual parametrization:

wl = —sin(¢)df + cos(y) sin(8)de
w? = cos(p)dh + sin(y) sin(8)d¢
w® = sin(0)de¢ + dy

Lapse functlon

a.(t): 3 different principal direction

scale factors (anisotropy) with: & - w! = ¢
[2
The basis 1-forms satisfy: dw; = %aljkwj N W » Killing vector: 30(37 R)

isometry group generator



Mathematical description: Hamiltonian formulation

_ 2 - . . . . Extrinsic curvature:
3+1 ADM formalism: ds* = -N<dr" + Z%-j(w@ + N'd7)(w’ 4+ N?dr) o L
; K4 — _(2v(ZNJ) — )

Z¢ \2/\/

Phase space: Bianchi IX 3-metric:d; + 3-momemtum: 7'/ = \/V(Kij — K~7)

- 1
Hamiltonian constraint: H = N/~ ((—(S)R + 7_1(7T¢j7TZ‘7 — §7T2))
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. . . 1 1 aja 1 a

Using Misner Variables: Q0= >Ilnaasas, B.=-In %7 Bo=—_In—=
3 6 a0 23 a
+ Conjugate momenums: « “« » |
¢ Isotropic geometry Anisotropic variables
aip1 6 12 12 ‘pQ" i
azp2 | = % L v P
asps 2 —32 0 (2 : : 3 2 _3
Canonical transformation S —-50Q

(g = e , | P = —e 2
for isotropic variables: 4 2 3 pe



Mathematical description: Hamiltonian formulation

o 12 22 i — Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) T
z- # K = N(2V(ZNJ) ~id)

Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~ii)

Hamiltonian constraint: H = N/~ ((—(S)R + v g m — —7T2)>
. . . ] | ] ajas 1 a1
Using Misner Variables: Q=-Inaasaz, f.=-In , B = ——= ln _—
+ Conjugate momenums: 1 4 »
. 1 B « sotropic geometry Anisotropic variables

aip1 6 12 12 Pq Sy

azp2 | = % L v P

asps 2 —32 0 P : : , 3 2 _3
Can_onlcal ’_transf_ormatlon q= eﬁQ, p e QQPQ
for isotropic variables: 3

(g >0 always)

Hamiltonian Constraint in Misner variables (natural units and A/

9
C=—7 2 365 +

= —24).

P+

Particle in 3D Minkowski s-t.
+ 36q3V(B) ™ ith

with time dependent potential

edB+

6
Where: V(B) = 3 [(2 cosh(2v33_) — 6—65+)2 _ 4} 41 (q P, /gf pi) €R




Mathematical description: Hamiltonian formulation

S R i i Extrinsic curvature:
3+1 ADM formalism: ds* = —N?dr” + ) 5w’ + N'dr)(w’ + NVdr) R
K'L] — W(QV(’NJ) _ ’)’”)

W =

Phase space: Bianchi IX 3-metric:@; + 3-momemtum: 7'/ = \/V(KU — K~id)

Hamiltonian constraint: H = N/~ ((—(S)R + v g m — —72))
. . . ] N 1 1 ajas 1 a1
Using Misner Variables: \Q/: ghq a1a9a3, \5 “ln—=, (fJ)=—= ln e

6 a / 2V/3

+ Conjugate momenums: 1 _ _ _
Anisotropic variables

|sotropic geometry

VA

(35)-(15 %) ]
ap2 | =1 1 11—2 —%
asps % _% 0

Hamiltonian Constraint in Misner variables B_ o

J P+
C=—2p® —36¢5+ +36q3V(B) / |
48 2

Where: V(3) = {(2 cosh(2v36_) — e‘65+) — 4} +1



Quantization and semicassical portrait

- Isotropic canonical variables: (¢, p )E R% xR » Positive half-plane /4,

_ \/
Covariant affine group quantization, Affine group structure Aff, (R):

and semiclassical portrait (0.5) g0.p0) — (qu Po +p>
using affine coherent states: P ’

dod unity: (1, 0) .

_ qap vt z

Ay = /m f(a.p) la,p){a. pl S Bounce (U(q,p)v)(z) = \/a@b <q)
I nt+vo 1) a(a=1) a(a—1)

3
4 K‘ ( \ — 524 /

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Quantization and semicassical portrait
» Positive half-plane 41

- Isotropic canonical variables: (q D )E R% xR

, \/
Covariant affine group quantization, > Affine group structure Aff, (R):
and semiclassical portrait (¢.9)(do. po) = (qqo,@ +p>
using affine coherent states: q
Qo unity: (1, 0) .
qap vt z
Ay = / fla:p)la:p){a:pl 5 » Bounce (U(g:p)¥)(x) = \/azb <q)
4’> v »(\192/) 7 » (%) = Qulp,v)g".
vl K 2:; n+v l\ ) (1. 1) — ea(jgl) ea(zljn
(:uvlj)_e \ 2 4)7 (DJOz(ILLv )_
+ Anisotropic variables: T+ = (8+,p+) € R — » Fullplane
Covariant WeyI-Heisenberg integral quantization: ¢
Weyl-Heisenberg group:
Ar) = U(r)QnU(r)T Gaussian
f(I') = Af = 0y = / r welght function [Q’ P] = 1ihl
rep: U(I‘) — (l(PQ—6P)

2l
Semiclassical portrait: f(r) / Fl] « FI]R' — ) f (I‘)iﬁ
8

> (p_|_) = p+ _|_ —5 V(ﬁ.{_.)* V(ﬁi) ( (4\/57 4)64\/§5—+45+ 4 D<4\/§, 4)€ﬁ4\/§‘8,+4ﬂ+ + D0, 8)€ﬂ85+>

( (2v/3,2)e 23825+ | D(9y/3,2)e2V3B-25+ 4 D)(0, 4)e 45+) 11

_|_
WI[\DQQ|._|

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Quantization and semicassical portrait

- Isotropic canonical variables: (¢, p )€ R% xR » Positive half-plane Q

----------------------------

1r 1 Z
= % LN “ <
. 0t
_1: - -1}
: -2}
=2} . [
=9 -1 0 1 2 R o v e s D R L%
-3 -2 -1 0 1 2 3
ﬁ' ﬁq-
: . G~ s d2y’
Semiclassical portrait: f(r)= [ F[II]«F[I(x —1)f(r )47T
R2
8 N7
(p+) = pj + pg V(Bs) 3 V(Bs) = ( D(4V/3, 4)e™38- 4B+ | D(44/3, 4)e4V38-+4B+ | D(078)€-85+>
- ==

CJOI[\DQ_'”._L

( (2/3,2)e 2V38--28+ | D(2y/3, 2)e2V3-~26+ 4 D(0, 4)e 45+) +1

[3] H. Bergeron, et al, (2020), Quantum Mixmaster as a Model of the Primordial Universe, Universe 6, 7.
[4] J.-P. Gazeau, et al. (2016) Covariant affine integral quantization(s), J. Math. Phys.57, 052102



Semiclassical portrait of full Hamiltonian constraint

R

V(B) —1]—- e

Wb

9 K(p,v) P+ %
P Hy V &,
U=7 (p2 + 7) — Q—2(p,v) 7z = — 36Qz2 (1, v)q

U.O0.L.W. _ p 6Qquantization
}u’ e + semiclassical

Hamilton equations: parameters
._ 9
q_ 2p7
&
9K _i__i 1 >~ 2 5
p=5—5—20- +24Q2q 3[V(8) ~ 1] - ZRq 3,
24 23 V(B) —1] 5 1t

By = _2Q—2% ; \

_ 2~ (we added Radiation)
P+ = 36Q2930:V(B),

* Very rich model:
Let's investigate, numerically, the effects of interplay between anisotropy and quantum bounce.



Solution for Isotropic case: ﬁi =0 = P+

4 8
) o (, Kwv)—35Q@-2(mv)z » R
iy = = + + 36C) 2 V)g3 — ——
1sotropic A P q2 Q§(Ma )q q2/3
Let's call:
. 4 8 .

L = 36@2 Kiso := K — gQ—QU_Q M = Q—Q
o . . : : : = (for simplicity)
(intrinsic isotropic curvature) (isotropic repulsive strength)

—~ T
/ .
Analytical aproximations for /o A N
quantum bounce and classical recolapse: / N
3 3 / | ."; .
() e
min — ; mar — \ 7 | — g Dk i ———
4 ~ L i i by s '
- - | R
- — sl |I
Phase-space solutions: > il
(for different R radiation contents) 6 -4 -2 0 2 4



Full anisotropic solution:

9/, K, :

ay

C=-|(p A

150 —Mp—g— q%[v_ ]__

2 2
3

q q

Phase space of isotropic variables: Asymmetric bounce of the universe, due to

Wl 10000 |

§
..................

increase of the role of anisotropy energy.
—_Extra boost to the post-bounce expansion

p

\ { ~5000
ﬁ_n'

Chaotic scenario— Very sensitive to initial conditions

(+ we have 6 quantization/semiclassical parameters)

— Ing



A realistic initial scenario:

: Anisotropic
Density parameters of Potential term
generalised-Friedmann equation: 4
- 2 =
Kz’so 4 P+ : 4 R 4 ng
1=— + M= + L¢3V | + = —
2,2 " 92 2 9,2,2 0 2
C]TP P\ q J p-q3 P
1 = _Qsem + Qani T Qrei N QK
Intially (close to the bounce) we want: Qsem > Qam > Q,,.el >> QK
2nd [?
260000; 1%': Semiclassical Repulsion dominates — Expansion
3rd I 2"!: Anisotropy plays a significant role — non-trivial Asymmetry
100000
I " 3™: Transition to radiation, matter dominates dynamics.
""" * Ing th. -
4 - 2 4" Classical recolapse.
-w:'oco; To be close to the bounce we require:
I 9Ki80 2 9Kiso
-200000 Z p:': Z
| AM 16M




A realistic initial scenario:

Different examples: p

o

ZEd L

200

EOL

00 -

Still very different initial values of variables
and parameters reproduce this starting scenario

Ing




Inflationary-expansion behaviour?

The Big Question: Can anisotropy make the phase of accelerated expansion to last long enough?

. : : - ’ ] Increasing # modes leavin
For inflationary scenario: @ > 0 7‘[ > () the horiz?)n (Super-Hubeeg)

Friedmann equation: H2 — F . qa + ... Where (X : Power law of our
3 scale factor” variable ¢
(Remember: ¢ = a2 ) v for inflationary term

Driving density term during inflation
(anisotropy in our model)

This condition translates into: oy > — 4/34 For inflationary behaviour

Our Friedmann equation: 1 p? 1 K M p2 /L \\\ 1 R
H2——p—2:—— szo_i_ pi H [V—l]'q_é/Jr——g
64 q 64 ¢ 144 ¢ \144 % 144 E
Epidq
\J
Specific situation for the system: We have to make this potential V' increase with

Extremal case for inﬂationarv behaviour <+ time |n|t|aIIy, close to the bounce, to make this
term decrease slower than q'4/3 during expansion




How to make potential increase?

V(B i) — Very steep triangular walls, with

flatter central part and 3 canyons.

| - » Length of the (closed) canyons in the vertex
< | modulated by semiclassical parameter @

We throw the particle in the exact direction

of the canyons to make the value of the

Py | potential increase for the longest time possible.
Afterwards it will roll down in the opposite direction.

-3 -2 -1 0 1 2 3
B+ £

Two important things:

- Small initial g, for smaller Universe
the walls are further away — flatter potential.

With expansion the walls get closer, smaller ﬁi . >

- Bigger initial p,  longer time the particle rolling up.

2
BUT : p, cannot be such big that it makes Mp—i > L4L/3
q q
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Directional Hubble rates:
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Conclusions and Future Investigations:

- Very simple model — Rich dynamics, many possibilities.
- Solve singularity problem — Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.



Conclusions and Future Investigations:

- Very simple model — Rich dynamics, many possibilities.
- Solve singularity problem — Quantum Bounce

- Anisotropy + bounce by themselves do not generate sufficient inflationary dynamics.

—» BUT: Might be the seed for future investigations: (Does not mean we cannot

generate structures)
- Generation of gravitational potential?
- Interplay with primordial perturbations?
- “Directional” inflation — Amplification by gravitational potential in each direction separately?

_ Maybe semiclassicality erase some features
> Another approach: Full quantum model — s 1o the bounce. Full quantum is more complicated.

Gravitational potentials g for other previously studied isotropic models:

02

—» Isotropic bouncing models + perturbations give this kind
of gravitational potential —» Generation of cosmological structures.

02-

|  afl—3w)
gl Valm) = [+ 3wty

The primordial spectrum is nearly scale invariant
but slightly blue-tilted — Can anisotropy improve this?

0.0;

L B R BN R [5] J. de Cabo Martin, P. Matkiewicz, and P. Peter, (2021) [arXiv:2111.02963]
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