Fermion coupling to loop quantum gravity

Based on: Phys. Rev. D 105, 124025

Cong Zhang

In collaboration with Jerzy Lewandowski

Introduction

Over the last decades, loop quantum gravity (LQG) has been well developed

- -Canonical approach: [Ashtekar & Lewandowski 2004, Han, Ma, Huang 2007, Thiemann 2008, et.al.]
- -Spinfoam Model: [Perez 2003, Rovelli & Vidotto 2015, et.al.]
- -Group field theory: [Fredel 2005, et.al.]

Some achievements of LQG [Ashtekar, Alesci, Assanioussi, Bodendofer, Dapor, Domagala, Giesel, Han, Kaminski, Liegener, Lewandowki, Liu, Ma, Makinen, Okolow, Pwalowski, Rovelli, Simolin, Sahlmann, Thiemann, Yang, Zhang, et.al.

- -a well defined kinematic Hilbert space,
- -solving the Gauss and diffeomorphism constraint explicitly,

- —semiclassical analysis: coherent state system, large j limit of spinfoam model et.al.

.

-a family of operators representing geometric observables: area, volume, length, curvature et.al.,

-the dynamics: the Hamiltonian constraint operator, transition amplitude, the attempt to analyze the dynamics et.al.

-cosmology & BH model: big bounce, BH-WH transition, discreteness of BH mass spectrum et.al.

Introduction

LQG sets a stage for incorporating matters into quantum spacetime

We are concerning about the model of LQG coupled to fermion field

By employing the procedure proposed by literature [Thiemann 1998] We:

- -solve the Gauss constraint explicitly
- -regularize and quantize the Hamiltonian constraint by introducing the vertex Hilbert space.

- Spacetime tells matter how to move; matter tells spacetime how to curve -J. A. Wheeler

 - Alesci, Ashtekar, Assanioussi, Bianchi, Domagala, Eder, Bordendorfer, Bojowald, Han ,Giesel, Lewandowski, Liu, Lee, Makinen, ,Perez, Sahlmann, Thiemann, Rovelli, CZ, ...

<u>Classical phase space</u>

Classical model of gravity coupled to the fermion field:

-First order formulation $S[\omega, e, \Psi]$: fermion couples to the connection ω directly.

torsion involved.

-Regular Hamiltonian analysis tells $\Pi = \sqrt{q} \Psi^{\dagger}$. -In our model, \sqrt{q} will become an operator: $\hat{\Pi}^{\dagger} = \sqrt{q} \hat{\Psi}$. -Contradiction: $0 = [\hat{\Pi}, \widehat{f(A)}]^{\dagger} = [\widehat{f(A)}, \hat{\Pi}^{\dagger}] = [\widehat{f(A)}, \sqrt{q} \hat{\Psi}] \neq 0$

- -Second order formulation $S[e, \Psi]$: fermion couples to the spin connection Γ compatible with e, where there is no

- One proposed the half-density $\widetilde{\Psi} := \sqrt[4]{q} \Psi$ and $\widetilde{\Pi} = \widetilde{\Psi}^{\dagger}$ for quantization [Thiemann et.al. QSD]

<u>Classical phase space</u>

The classical phase space: $(A_a^i, E_i^b, \xi, \xi^{\dagger}, \nu, \nu^{\dagger})$, A_a^i : an SU(2) connection on spatial manifold $E_i^b = |\det(e_a^i)| e_i^b$ densitized triad $\xi := \sqrt[4]{q} \Psi_{-}, \ \nu := \sqrt[4]{q} \Psi_{+}$

(anti-)Poisson brackets: for $A, B = \pm 1/2$ $\{A_a^i(x), E_i^b(y)\} = \delta_a^b \delta_i^i \delta(x, y)$ $\{\xi_A(x),\xi_B^{\dagger}(y)\}_+ = -i\delta_{AB}\delta(x,y)$ $\{\nu_A(x), \nu_B^{\dagger}(y)\}_+ = -i\delta_{AB}\delta(x, y)$

Quantization: Gravity

$$\mathcal{G} = L^2(\mathrm{SU}(2)^{|E(\gamma)|}, \mathrm{d}\mu_H)$$

Multiplication operator: $D_{mn}^{j}(h_{e})$ Derivative operator: $\hat{J}_{e,v}^{k}$ (left or right vector field on SU(2))

 $D_{mn}^{j}(h_{e})$: parallel transpose from v_{1} to v_{2}

 $\hat{J}^k_{e,v}$: Area vector at the v

Quantization: Fermion

Canonical transformation :

$$\zeta_{x} = \frac{1}{\sqrt{\hbar}} \int_{\Sigma} \mathrm{d}^{3} y \sqrt{\delta(x, y)} \xi(y)$$

Ladder operator: $\hat{\zeta}_{x,A}, \ \hat{\zeta}_{x,A}^{\dagger}, A = \pm \frac{1}{2}$, for example

New anti-commutator relation:

$$\{\zeta_{x,A}, \zeta_{y,B}^{\dagger}\}_{+} = -\frac{i}{\hbar} \delta_{AB} \delta_{x,y}, \quad A, B = \pm \frac{1}{2}$$

$$\mathcal{H}_{x}^{F} \qquad \mathcal{H}_{x}^{F} = \operatorname{span}(|00\rangle_{x}, |01\rangle_{x}, |10\rangle_{x}, |11\rangle_{x})$$

cample:
$$\hat{\zeta}_{x,\frac{1}{2}}^{\dagger} |0,i_2\rangle_x = |1,i_2\rangle_x, \ \hat{\zeta}_{x,-\frac{1}{2}}^{\dagger} |i_1,0\rangle_x = (-1)^{i_1} |i_1,1\rangle_x$$

<u>Compare with Lattice QFT</u>

CZ, Liu, Han 2022

 $\Theta_{A+}(k)e^{ik\cdot x}$ diagonalize the effective Hamiltonian: $\hat{H}_{\text{eff}}^{F} = \langle \text{background} | \hat{H}_{F}(\hat{\zeta}, \hat{\zeta}^{\dagger}, \hat{h}_{e}, \hat{J}_{v,e}^{i}) | \text{background} \rangle$

 $\hat{\zeta}_{x,A} = \sum_{k} \Theta_{A+}(k) \hat{\zeta}_{k,B} e^{ik \cdot x}$ $\hat{a}_k \sim \hat{\zeta}_{k,+}$

The Hilbert space: $\mathscr{H}^G_{\gamma} \otimes \mathscr{H}^F_{V(\gamma)}$

 $\hat{b}_k \sim \hat{\tilde{c}}^{\dagger}$ **`**k,-

in \mathscr{H}^G_{γ}

The Gauss Constraint

$$\hat{G}_{v,m} = \hbar \sum_{e} \hat{J}_{m}^{v,e} + \hbar \hat{\mathcal{F}}_{v,m}$$

 $\hat{\mathscr{F}}_{v,m}$ performs like an angular momentum operator:

$$\hat{\mathscr{F}}_{v,m} | 0,0 \rangle_{v} = 0 = \hat{\mathscr{F}}_{v,m} | 1,1 \rangle_{v}$$
$$\hat{\mathscr{F}}_{v,m} \left(| 1,0 \rangle_{v}, | 0,1 \rangle_{v} \right) = \left(| 1,0 \rangle_{v}, | 0,1 \rangle_{v} \right) \frac{\sigma_{m}}{2}$$

$$\exp(\xi^{m}\hat{\mathscr{F}}_{v,m})(\alpha | 0,0\rangle_{v} + \beta | 1,1\rangle_{v}) = \alpha | 0,0\rangle_{v} + \beta | 1,1\rangle_{v}$$
$$\exp(\xi^{m}\hat{\mathscr{F}}_{v,m})(\alpha | 1,0\rangle_{v} + \beta | 0,1\rangle_{v}) = (| 1,0\rangle_{v}, | 0,1\rangle_{v}) \cdot \exp(\xi^{m}\tau_{m}) \cdot (\alpha,\beta)^{T}$$

$$\left(\gamma_{v} \right) \frac{\sigma_{m}}{2}$$

The Gauss Constraint

$$\hat{G}_{v,m} = \hbar \sum_{e} \hat{J}_{m}^{v,e} + \hbar \hat{\mathcal{F}}_{v,m}$$

$$\left(\operatorname{Inv} \left(\mathcal{H}_{v}^{G} \right) \otimes |0,0\rangle_{v} \right) \oplus$$

$$\left(\operatorname{Inv} \left(\mathcal{H}_{v}^{G} \right) \otimes |1,1\rangle_{v} \right)$$

$$\mathcal{Inv} \left(\mathcal{H}_{v}^{G} \right) \otimes |1,1\rangle_{v}$$

$$\mathcal{H}_{v}^{G} = \mathcal{H}_{v}^{G}$$

In our model, the fermion Hamiltonian is given by:

$$\widehat{H^F[N]} = \lim_{\delta \to 0} \widehat{H^F_{\delta}[N]} + \widehat{H^F_{\delta}[N]}^{\dagger}$$

$$\widehat{H_{\delta}(v)} := \sum_{v \in V(\gamma)} \widehat{\sqrt{V_v^{-1}}} \left(\widehat{iA_{\delta}(v)} + \frac{\beta}{2} \widehat{B_{\delta}(v)} + \frac{1 + \beta^2}{2\beta} \widehat{C_{\delta}(v)} + \beta \widehat{A_{\delta}(v)} \right) \widehat{\sqrt{V_v^{-1}}}$$

Consider the typical term coming from $(D_a \theta)^{\dagger} E_i^a \sigma^i \theta$:

$$\widehat{A_{\delta}(v)} = \kappa \hbar \beta N(v) \sum_{e \text{ at } v} \left(\hat{\theta}^{\dagger}(t_e) h_{e(v,\delta)} \sigma^i \hat{\theta}(v) \hat{J}_i^{v,e} - \hat{\theta}^{\dagger}(v) \sigma^i \hat{\theta}(v) \hat{J}_i^{v,e} \right)$$

Three issues:

- -to define the limit as $\delta \rightarrow 0$,
- $-A_{\delta}(v)^{\dagger}$ is not densely defined, $-\widehat{A_{\delta}(v)}^{\dagger}$ is not diff. covariant.

V

Three issues:

- -to define the limit as $\delta \rightarrow 0$,
- $-A_{\delta}(v)^{\dagger}$ is not densely defined, $-\widehat{A_{\delta}(v)}^{\dagger}$ is not diff. covariant.

Three issues:

- -to define the limit as $\delta \rightarrow 0$,
- $-A_{\delta}(v)^{\dagger}$ is not densely defined, $-\widehat{A_{\delta}(v)}^{\dagger}$ is not diff. covariant.

Three issues:

- —to define the limit as $\delta \rightarrow 0$,
- $-\widehat{A_{\delta}(v)}^{\dagger}$ is not densely defined, $-\widehat{A_{\delta}(v)}^{\dagger}$ is not diff. covariant.

The vertex Hilbert is defined such that:

This can be done by averaging with the diffeomorphisms preserving v. \mathscr{H}_{vtx} is a dual space of the *cylindrical function* space, everything is well-defined by the duality [Lewandowski, Sahlmann 2014, Alesci, Assanioussi, Lewandowski & Mäkinen 2015]

The Hamiltonian Constraint δ'' δ' \mathcal{U} \mathcal{U} $\lim_{\delta \to 0} \widehat{A_{\delta}(v)} * \text{ is well defined in } \mathscr{H}_{\text{vtx}}, \text{ because } \widehat{A_{\delta}(v)} * = \widehat{A_{\delta'}(v)} * = \cdots$ Issue 1 is fixed

The vertex Hilbert is defined such that:

The vertex Hilbert is defined such that:

Issues 2 and 3 are fixed

Conclusion and outlook

Our work considers the coupling of fermion field to canonical LQG.

constraint by introducing the vertex Hilbert space.

the backaction between quantum matter and quantum spacetime.

- We investigate the Gauss and the Hamiltonian constraint in this model.
- We solve the Gauss constraint explicitly, and regularize and quantize the Hamiltonian
- This framework will be applied to recover the usual quantum field theory, and consider

Thank you