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Over the last decades, loop quantum gravity (LQG) has been well developed 

—Canonical approach: [Ashtekar & Lewandowski 2004, Han, Ma, Huang 2007, Thiemann 2008, et.al.]

—Spinfoam Model: [Perez 2003, Rovelli & Vidotto 2015, et.al.]

—Group field theory: [Fredel 2005, et.al.]

Some achievements of LQG [Ashtekar, Alesci, Assanioussi, Bodendofer, Dapor, Domagala,  Giesel, Han, Kaminski, Liegener, Lewandowki, Liu, Ma, 

Makinen, Okolow, Pwalowski, Rovelli, Simolin, Sahlmann, Thiemann, Yang, Zhang, et.al. ]:
 
—a well defined kinematic Hilbert space, 
—solving the Gauss and diffeomorphism constraint explicitly, 
—a family of operators representing geometric observables: area, volume, length, curvature et.al. , 
—the dynamics: the Hamiltonian constraint operator, transition amplitude, the attempt to analyze the dynamics et.al. 
—semiclassical analysis: coherent state system, large  limit of spinfoam model et.al.  
—cosmology & BH model: big bounce, BH-WH transition, discreteness of BH mass spectrum et.al. 
…….
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Spacetime tells matter how to move; matter tells spacetime how to curve
                                                                             —J. A. Wheeler

LQG sets a stage for incorporating matters into quantum spacetime

By employing the procedure proposed by literature [Thiemann 1998] we:
—solve the Gauss constraint explicitly
—regularize and quantize the Hamiltonian constraint by introducing the vertex Hilbert space.

We are concerning about the model of LQG coupled to fermion field

Alesci, Ashtekar, Assanioussi, Bianchi, Domagala,  Eder, Bordendorfer, Bojowald, 
Han ,Giesel, Lewandowski, Liu, Lee, Makinen, ,Perez, Sahlmann, Thiemann, Rovelli, CZ, … 
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Classical model of gravity coupled to the fermion field: 

—First order formulation : fermion couples to the connection  directly.  

—Second order formulation : fermion couples to the spin connection  compatible with , where there is no 
torsion involved.                                                   

S[ω, e, Ψ] ω

S[e, Ψ] Γ e

Classical phase space

—Regular Hamiltonian analysis tells . 

—In our model,  will become an operator: .

—Contradiction: 

One proposed the half-density  for quantization [Thiemann et.al. QSD]

Π = qΨ†

q Π̂† = ̂q Ψ̂

0 = [Π̂, ̂f(A) ]† = [ ̂f(A) , Π̂†] = [ ̂f(A) , ̂q Ψ̂] ≠ 0

Ψ̃ := 4 qΨ  and  Π̃ = Ψ̃ †
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The classical phase space: , 
   : an SU(2) connection on spatial manifold 

   densitized triad 

   

(Ai
a, Eb

j , ξ, ξ†, ν, ν†)
Ai

a

Eb
j = | det(ei

a) |eb
j

ξ := 4 qΨ−, ν := 4 qΨ+

(anti-)Poisson brackets: for 
   

   

   

A, B = ± 1/2
{Ai

a(x), Eb
j (y)} = δb

aδi
jδ(x, y)

{ξA(x), ξ†
B(y)}+ = − iδABδ(x, y)

{νA(x), ν†
B(y)}+ = − iδABδ(x, y)



Quantization: Gravity
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ℋG
γ = L2(SU(2)|E(γ)|, dμH)

Multiplication operator: 

Derivative operator:  (left or right vector field on SU(2))

Dj
mn(he)

̂Jk
e,v

e
Dj

mn(he)
̂Jk
e,v1

̂Jk
e,v2

: parallel transpose from  to 


: Area vector at the 

Dj
mn(he) v1 v2

̂Jk
e,v v
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Canonical transformation :

  ζx =
1

ℏ ∫Σ
d3y δ(x, y)ξ(y)

ℋF
x = span( |00⟩x, |01⟩x, |10⟩x, |11⟩x)x

V
ℋF

V = ⨂
x∈V

ℋF
x

Ladder operator: , for example:  ,  ̂ζx,A, ̂ζ†
x,A A = ± 1

2
̂ζ†
x, 1

2
|0,i2⟩x = |1,i2⟩x

̂ζ†
x,− 1

2
| i1,0⟩x = (−1)i1 | i1,1⟩x

New anti-commutator relation:

 {ζx,A, ζ†
y,B}+ = −

i
ℏ

δAB δx,y, A, B = ± 1
2



Compare with Lattice QFT
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γ

The Hilbert space:  ℋG
γ ⊗ ℋF

V(γ)

̂ζx,A = ∑
k

ΘA+(k) ̂̃ζk,Beik⋅x

̂ak ∼ ̂̃ζk,+ b̂k ∼ ̂̃ζ†
k,−

  diagonalize the effective Hamiltonian:

 


   

ΘA+(k)eik⋅x

ĤF
eff = ⟨background | ĤF( ̂ζ, ̂ζ†, ĥe, ̂Ji

v,e) |background⟩

in ℋG
γ

CZ, Liu, Han 2022
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Ĝv,m = ℏ∑
e

̂Jv,e
m + ℏℱ̂v,m

ℱ̂v,m |0,0⟩v = 0 = ℱ̂v,m |1,1⟩v

ℱ̂v,m ( |1,0⟩v, |0,1⟩v) = ( |1,0⟩v, |0,1⟩v)
σm

2

  performs like an angular momentum operator: ℱ̂v,m

exp(ξmℱ̂v,m)(α |0,0⟩v + β |1,1⟩v) = α |0,0⟩v + β |1,1⟩v

exp(ξmℱ̂v,m)(α |1,0⟩v + β |0,1⟩v) = ( |1,0⟩v, |0,1⟩v) ⋅ exp(ξmτm) ⋅ (α, β)T
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Ĝv,m = ℏ∑
e

̂Jv,e
m + ℏℱ̂v,m

Inv (ℋG
v ⊗ ℋF

v )
(Inv (ℋG

v ) ⊗ |0,0⟩v) ⊕

(Inv (ℋG
v ) ⊗ |1,1⟩v)

j1

j2
j3

j4 im1m2m3m4
⊗ |0,0⟩ im1m2m3m4a

j1

j2

j3

j4ℋG
v = ℋj1 ⊗ ℋj2 ⊗ ℋj3 ⊗ ℋj4
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In our model, the fermion Hamiltonian is given by:



̂HF[N] = lim
δ→0

̂HF
δ [N] + ̂HF

δ [N]†

̂Hδ(v) := ∑
v∈V(γ)

̂
V−1

v (i ̂Aδ(v) +
β
2

̂Bδ(v) +
1 + β2

2β
̂Cδ(v) + β ̂Aδ(v) )

̂
V−1

v

Consider the typical term coming from  :  
(Daθ)†Ea
i σiθ

̂Aδ(v) = κℏβN(v) ∑
e at v

( ̂θ†(te)he(v,δ)σi ̂θ(v) ̂Jv,e
i − ̂θ†(v)σi ̂θ(v) ̂Jv,e

i )
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̂Aδ(v) :

Three issues:


—to define the limit as ,


—  is not densely defined,

—  is not diff. covariant.

δ → 0

̂Aδ(v) †

̂Aδ(v) †

Issue 1: ⟨ | ⟩ = 0
 cannot be well definedlim

δ→0
̂Aδ(v)
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Issue 2:  


̂Aδ(v) :

Three issues:


—to define the limit as ,


—  is not densely defined,

—  is not diff. covariant.

δ → 0

̂Aδ(v) †

̂Aδ(v) †

1
2

̂Aδ(v) :
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Issue 2:  


̂Aδ(v) :

Three issues:


—to define the limit as ,


—  is not densely defined,

—  is not diff. covariant.

δ → 0

̂Aδ(v) †

̂Aδ(v) †

̂Aδ(v) † : + + ⋯
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Issue 3: 

̂Aδ(v) † :

0

̂Aδ(v) :

Three issues:


—to define the limit as ,


—  is not densely defined,

—  is not diff. covariant.

δ → 0

̂Aδ(v) †

̂Aδ(v) †



The Hamiltonian Constraint
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This can be done by averaging with the diffeomorphisms preserving .

 is a dual space of the cylindrical function space, everything  is well-defined by 

the duality

v
ℋvtx

The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯

[Lewandowski, Sahlmann 2014,  Alesci, Assanioussi, Lewandowski & Mäkinen 2015]
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 is well defined in , because  lim
δ→0

̂Aδ(v) * ℋvtx
̂Aδ(v) * = ̂Aδ′ 

(v) * = ⋯

̂Aδ(v) :

The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯

Issue 1 is fixed
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The vertex Hilbert is defined such that:

∼ ∼ ∼ ⋯

Rather than  


we consider

lim
δ→0

̂Aδ(v) *+ lim
δ→0

( ̂Aδ(v) †)*

lim
δ→0

̂Aδ(v) *+( lim
δ→0

̂Aδ(v) *)
†

Issues 2 and 3 are fixed

lim
δ→0

̂Aδ(v) * :



Conclusion and outlook
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Our work considers the coupling of fermion field to canonical LQG.

We investigate the Gauss and the Hamiltonian constraint in this model.

We solve the Gauss constraint explicitly, and regularize and quantize the Hamiltonian 
constraint by introducing the vertex Hilbert space.

This framework will be applied to recover the usual quantum field theory, and consider 
the backaction between quantum matter and quantum spacetime. 

Thank you 


