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LooP QUANTUM GRAVITY

| Quantization of General Relativity

Gravity as a gauge theory
(Ashtekar-Barbero connection: A)

(A,E)

| Holonomy-flux algebra |

‘ Phase space

Cylindrical functions Cyl

~J

graphs & spins

a measure ———==p

| Hilbert space

i Dynamics |

Constraints

Internal gauge + diffeomorphisms

AN

Quantum constraints
operators

Covariant transition
amplitudes
(Spin foams, GFT)

1/8



LOOP QUANTUM GRAVITY + MATTER

Point
holonomies

holonomies half-densities

Cylindrical functions

Hilbert space + quantum dynamics

Canonical dynamics = Quantum constraint operators

What are the relevant physical & semi-classical states?
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FROM Q.G.+M. TO Q. FIELDS ON A FIXED BACKGROUND

How to connect the low energy physics to the loop quantum gravity framework?

How to relate the Fock quantization of matter fields and the loop quantization?
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FROM Q.G.+M. TO Q. FIELDS ON A FIXED BACKGROUND

How to connect the low energy physics to the loop quantum gravity framework?
How to relate the Fock quantization of matter fields and the loop quantization?

R-Fock representations (measures)

M. Varadarajan [PRD ‘00, ‘01, ‘02] — U(1)" gauge theory
A. Ashtekar, J. Lewandowski, H. Sahlmann [CQG ‘03] — Scalar field
M. A., J. Lewandowski [PRD ‘22] — SU(N) gauge theory

* QOriginal motivation:
understanding the relation between quant. states of linearized gravity and states in LQG.

* What is it:
* Roughly: r-Fock reps. are reps. for matter fields propagating on Minkowski spacetime, which
connect the standard Fock reps. to the background independent loop reps.
* measurements at a given “scale”: 3 r-Fock rep. =Fock rep.

* Role:
* Provide new measures for the loop states.
+ Provide mappings of Fock states to the L.oop space.
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ABELIAN GAUGE THEORY

Smearing function
(Schwartz)

- = 503)
lim f,-(z —y) = 0™ (z,y)

HA:(h,E,) HA :(h", E)
4 ) 4 )
he(A) := exp [z / ds 4%(s) Aa(y(s)) A (z) = / ) d’yfr(z —y)Aa(y)
K “ Isomorphic "
| B - | vt — e ) ) e i [ ds 505120050 J
R3 < Y
\\ “smeared holonomy”

The Fock rep. of HA_induces the r-Fock rep. of HA
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ABELTAN GAUGE THEORY

NON—ABELIAN
Smearing function
(Schwartz)
lim £, (z —y) = 8% (z,y)
HA:(h,E,) HAr:(hT, E)
4 ) 4 N
he(A) := exp [z / ds 4%(s) Aa(y(s)) Ay () == /R ) Iy fr(r —y)Aa(y)
8 “ Isomershic— '
E}(x):= | dyfr(x—y)E* () ho(A) :=exp [i [ ds 5*(s)AL(7(s))
o= | ) 0

\__ =S i /
\\ “smeared holonomy”

The Fock rep. of HA indueesthrertockrep-of-HA

induces an r-Fock measure on HA

Provide mappings of Fock states to the L.oop space
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R—Fock MEASURES FOR SU(N) GAUGE THEORIES

* Defining the measure in the case of U(1):

J gy ey = 0lisioy = [ e, w4) = s, R l0)

consequence of Mandelstam identities for U(1): every U(1) cylindrical function can be expressed
as a linear combination of Wilson loops.
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R—Fock MEASURES FOR SU(N) GAUGE THEORIES

* Defining the measure in the case of U(1):

J gy ey = 0lisioy = [ e, w4) = s, R l0)

consequence of Mandelstam identities for U(1): every U(1) cylindrical function can be expressed
as a linear combination of Wilson loops.

* Defining the measure in the case of SU(N):

* We “cannot” use smeared holonomies: gauge transformations are peculiar.
* Mandelstam identities for SU(N) imply that the natural generalization is in terms of Wilson
loops:

b, WA W () = O W (0)

To caLCULATE
NoT EAsy!

W;J = Tr [BQ’J } “r-Wilson loop operator”

Wi = ZTr H

m=1

P/ dsi .. dan / Q‘k }, (8ms Eom) (et (km) + e (—Km))
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R—Fock MEASURES FOR SU(N) GAUGE THEORIES

e Linear functional: j, — fundamental rep.
L HA— C
S j L S R
r Vo o = : Jo TJo
P Z; alwﬂ . .Wm_1 : Z; az<0|W% . .W%ZV_1 0)

- Definiteness :  boundedness of the coefficients implies the convergence of the expansion of
the expectation value;

- Positivity : Mandelstam identities for the smeared Wilson loop operators;

« Existence of an induced measure on A/G : continuity w.r.t. the C*-norm on A/G

M . M .
‘CI)F [Z a,L-W;’;]O] < sup | a;Wie (A)|
i=1 AcA/G li=1

the smearing: AecS* — A"eS*NA
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R—Fock MEASURES FOR SU(N) GAUGE THEORIES

* Mapping between measures:

dMgU(N) — Z Z @T’F E awLWino [ W’%/?}:OV_]_ \Ij]_"’{j’L} d”%’U(N)
I {],L}F ({’y,i},ai)EIp(‘lfp,{j,L})

lift to a gauge invariant measure on A via group averaging.
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R—Fock MEASURES FOR SU(N) GAUGE THEORIES

* Mapping between measures:

d//l:ng(N) — Z Z @T’F z alW’i’{o [ W"}’?}'OV ) \Ij]_"’{j,L} dﬂg’U(N)
I {j,L}F ({fy,i},ai)EIp(‘llp,{j,L}) B

lift to a gauge invariant measure on A via group averaging.

* U(1) example:

+ r-Fock measure & AL-measure: n, —rep. label; G’ — smearing factor
dugr iy = ! Grrl M dug
Moy = ZGXP T4 anJ 1J r,i | AHy (1)
r.i I,J

* Fock states mapped to Cyl*, in particular the vacuum st. & canonical coherent states:

1
exp —q—QZnInJGFJ (Nt 7
1,J

Zr = Zexp [_q% ZnIZ;
I

rna

+ Shadow states = projections of Fock states on separable sub-Hilbert spaces:
exp. : fixed graph, dynamical super-selected sector, ...
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COMMENTS & OUTLOOK

v/ Results:
* Construction of r-Fock measures to the general SU(IN) case:
Use of Wilson loops and their properties provides a systematic procedure;
* Construction of an r-Fock measure for the fermions sector (to appear soon);

v/ Implications:
* Fock states as shadow states :
* Matter states encoding Minkowski geometry;
* Non-local coefficients;
* Graphs superposition could be restricted by the dynamics;

To explore:
* Non-locality (entanglement) & semi-classical prop. of shadow states;
* Effective dynamics for the shadow states as approximate physical states;
* Role in the construction of a continuum limit for LQG;



COMMENTS & OUTLOOK

v/ Results:
* Construction of r-Fock measures to the general SU(IN) case:
Use of Wilson loops and their properties provides a systematic procedure;
* Construction of an r-Fock measure for the fermions sector (to appear soon);

v/ Implications:
* Fock states as shadow states :
* Matter states encoding Minkowski geometry;
* Non-local coefficients;
* Graphs superposition could be restricted by the dynamics;

To explore:
* Non-locality (entanglement) & semi-classical prop. of shadow states;
* Effective dynamics for the shadow states as approximate physical states;
* Role in the construction of a continuum limit for LQG;




	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page5 (1)
	page5 (2)
	page6 (1)
	page6 (2)
	Slide 10
	page8 (1)
	page8 (2)
	page9 (1)
	page9 (2)

