

MATTER FIELDS IN LOOP QUANTUM GRAVITY

MEHDI ASSANIOUSSI

FACULTY OF PHYSICS, UNIVERSITY OF WARSAW

8TH CONFERENCE OF THE POLISH SOCIETY ON RELATIVITY WARSAW, POLAND

Scalar field	Gauge field	Fermions
Point holonomies	holonomies	half-densities
Cylindrical functions		
Hilbert space + quantum dynamics		

Canonical dynamics = Quantum constraint operators

What are the relevant physical & semi-classical states?

FROM Q.G.+M. TO Q. FIELDS ON A FIXED BACKGROUND

How to connect the low energy physics to the loop quantum gravity framework?

How to relate the Fock quantization of matter fields and the loop quantization?

FROM Q.G.+M. TO Q. FIELDS ON A FIXED BACKGROUND

How to connect the low energy physics to the loop quantum gravity framework?

How to relate the Fock quantization of matter fields and the loop quantization?

R-Fock representations (measures)

M. Varadarajan [PRD '00, '01, '02] – *U(1)*^{*n*} gauge theory A. Ashtekar, J. Lewandowski, H. Sahlmann [CQG '03] – *Scalar field* M. A., J. Lewandowski [PRD '22] – *SU(N)* gauge theory

- Original motivation: understanding the relation between quant. states of linearized gravity and states in LQG.
- What is it:
 - Roughly: r-Fock reps. are reps. for matter fields propagating on Minkowski spacetime, which connect the standard Fock reps. to the background independent loop reps.
 - measurements at a given "scale": \exists r-Fock rep. \equiv Fock rep.
- Role:
 - Provide new measures for the loop states.
 - Provide mappings of Fock states to the Loop space.

The Fock rep. of *HA*^{*r*} induces the r-Fock rep. of *HA*

NON-ABELIAN

induces an r-Fock measure on HA

Provide mappings of Fock states to the Loop space

• Defining the measure in the case of U(1):

$$\int d\mu_{U(1)}^r h_{\gamma}(A) := \langle 0|\hat{h}_{\gamma}^r|0\rangle \qquad \Rightarrow \qquad \int_{\bar{\mathcal{A}}/\bar{\mathcal{G}}} d\mu_{U(1)}^r \Psi(A) := \langle 0|\psi(\hat{h}_{\gamma_1}^r, \dots, \hat{h}_{\gamma_K}^r)|0\rangle$$

consequence of Mandelstam identities for U(1): every U(1) cylindrical function can be expressed as a linear combination of *Wilson loops*.

• Defining the measure in the case of U(1):

$$\int d\mu_{U(1)}^r h_{\gamma}(A) := \langle 0|\hat{h}_{\gamma}^r|0\rangle \qquad \Rightarrow \qquad \int_{\bar{\mathcal{A}}/\bar{\mathcal{G}}} d\mu_{U(1)}^r \Psi(A) := \langle 0|\psi(\hat{h}_{\gamma_1}^r, \dots, \hat{h}_{\gamma_K}^r)|0\rangle$$

consequence of Mandelstam identities for U(1): every U(1) cylindrical function can be expressed as a linear combination of *Wilson loops*.

- Defining the measure in the case of SU(N):
 - We "cannot" use smeared holonomies: gauge transformations are peculiar.
 - *Mandelstam identities* for SU(N) imply that the natural generalization is in terms of Wilson loops:

$$\begin{split} \int d\mu_{SU(N)}^{r} \ W_{\gamma_{1}}^{J}(A) \dots W_{\gamma_{N-1}}^{J}(A) &:= \underbrace{\langle 0 | \hat{W}_{\gamma_{1}}^{r,J} \dots \hat{W}_{\gamma_{N-1}}^{r,J} | 0 \rangle}_{\text{To calculate Not easy!}} \\ \hat{W}_{\gamma}^{r,J} &:= \operatorname{Tr} \left[\hat{h}_{\gamma}^{r,J} \right] \quad \text{``r-Wilson loop operator''} \quad \overset{\text{To calculate Not easy!}}{\underset{Not easy!}{}} \\ \hat{W}_{\gamma}^{r,J} &= \sum_{n=0}^{\infty} \operatorname{Tr} \left[\prod_{m=1}^{n} \tau_{i_{m}}^{J} \right] \mathcal{P}_{\gamma} ds_{1} \dots ds_{n} \prod_{m=1}^{n} \int \frac{d^{3}k_{m}}{q\sqrt{2|k_{m}|}} \tilde{X}_{\gamma,r}^{a_{m}}(s_{m},k_{m}) \left(c_{a_{m}}^{i_{m}\dagger}(k_{m}) + c_{a_{m}}^{i_{m}}(-k_{m}) \right) \end{split}$$

• Linear functional:

 j_o – fundamental rep.

$$\Phi_F^r \left[\sum_{i=1}^M a_i W_{\gamma_1^i}^{j_o} \dots W_{\gamma_{N-1}^i}^{j_o} \right] := \sum_{i=1}^M a_i \langle 0 | \hat{W}_{\gamma_1^i}^{r,j_o} \dots \hat{W}_{\gamma_{N-1}^i}^{r,j_o} | 0 \rangle$$

 $\Phi^r_{\scriptscriptstyle F}:\mathcal{HA}\longrightarrow\mathbb{C}$

- **Definiteness** : **boundedness of the coefficients** implies the convergence of the expansion of the expectation value;
- **Positivity** : *Mandelstam identities* for the smeared Wilson loop operators;
- Existence of an induced measure on $\overline{A}/\overline{G}$: continuity w.r.t. the C*-norm on $\overline{A}/\overline{G}$

$$\left| \Phi_F \left[\sum_{i=1}^M a_i W^{r,j_o}_{\gamma_i} \right] \right| \le \sup_{A \in \bar{\mathcal{A}}/\bar{\mathcal{G}}} \left| \sum_{i=1}^M a_i W^{j_o}_{\gamma_i}(A) \right|$$

the smearing : $A \in S^* \longrightarrow A^r \in S^* \cap \overline{A}$

• Mapping between measures:

$$d\mu^{r}_{SU(N)} = \left(\sum_{\Gamma} \sum_{\{j,\iota\}_{\Gamma}} \Phi^{r}_{F} \left[\sum_{(\{\gamma^{i}_{k}\},a_{i})\in\mathcal{I}_{\Gamma}\left(\Psi_{\Gamma,\{j,\iota\}}\right)} a_{i}W^{j_{o}}_{\gamma^{i}_{1}}\dots W^{j_{o}}_{\gamma^{i}_{N-1}}\right] \overline{\Psi_{\Gamma,\{j,\iota\}}}\right) d\mu^{o}_{SU(N)}$$

lift to a gauge invariant measure on \overline{A} via group averaging.

• Mapping between measures:

$$d\mu^{r}_{SU(N)} = \left(\sum_{\Gamma} \sum_{\{j,\iota\}_{\Gamma}} \Phi^{r}_{F} \left[\sum_{(\{\gamma^{i}_{k}\},a_{i})\in\mathcal{I}_{\Gamma}\left(\Psi_{\Gamma,\{j,\iota\}}\right)} a_{i}W^{j_{o}}_{\gamma^{i}_{1}}\dots W^{j_{o}}_{\gamma^{i}_{N-1}}\right] \overline{\Psi_{\Gamma,\{j,\iota\}}}\right) d\mu^{o}_{SU(N)}$$

lift to a gauge invariant measure on \overline{A} via group averaging.

- U(1) example:
 - r-Fock measure & AL-measure:

 n_I – rep. label; G^r_{IJ} – smearing factor

$$d\mu_{U(1)}^{r} = \left(\sum_{\Gamma,\vec{n}} \exp\left[-\frac{1}{4q^{2}}\sum_{I,J}n_{I}n_{J}G_{IJ}^{r}\right] \overline{\mathcal{N}_{\Gamma,\vec{n}}}\right)d\mu_{U(1)}^{o}$$

• Fock states mapped to Cyl*, in particular the vacuum st. & canonical coherent states:

$$\mathcal{Z}_{F}^{r} = \sum_{\Gamma,\vec{n}} \exp\left[-\frac{1}{q^{2}} \sum_{I} n_{I} Z_{I}^{r}\right] \exp\left[-\frac{1}{q^{2}} \sum_{I,J} n_{I} n_{J} G_{IJ}^{r}\right] \langle \mathcal{N}_{\Gamma,\vec{n}}$$

• Shadow states = projections of Fock states on separable sub-Hilbert spaces: exp. : fixed graph, dynamical super-selected sector, ...

✔ Results:

- Construction of r-Fock measures to the general SU(N) case: Use of Wilson loops and their properties provides a systematic procedure;
- Construction of an r-Fock measure for the fermions sector (to appear soon);
- ✓ Implications:
 - Fock states as shadow states :
 - Matter states encoding Minkowski geometry;
 - Non-local coefficients;
 - Graphs superposition could be restricted by the dynamics;

Q To explore:

- Non-locality (entanglement) & semi-classical prop. of shadow states;
- Effective dynamics for the shadow states as approximate physical states;
- Role in the construction of a continuum limit for LQG;

✔ Results:

- Construction of r-Fock measures to the general SU(N) case: Use of Wilson loops and their properties provides a systematic procedure;
- Construction of an r-Fock measure for the fermions sector (to appear soon);
- ✓ Implications:
 - Fock states as shadow states :
 - Matter states encoding Minkowski geometry;
 - Non-local coefficients;
 - Graphs superposition could be restricted by the dynamics;

Q To explore:

- Non-locality (entanglement) & semi-classical prop. of shadow states;
- Effective dynamics for the shadow states as approximate physical states;
- Role in the construction of a continuum limit for LQG;

