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Introduction

• General relativity (GR) is well tested in the weak-field regime, whereas the

strong-field regime still remains essentially unexplored and unconstrained.

• The attempts to construct a unified theory of all the interactions naturally lead

to scalar-tensor-type generalizations of GR viewed as an effective field theory

(EFT) operating in the strong-gravity regime.

• The effects of higher-order curvature operators become more significant exciting

the scalar degree of freedom in the strong-field regime. When the effective mass

is chosen to be tachyonic, GR solutions may become unstable, while stable black

hole or star solutions acquire scalar hair absent in GR.
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• “Spontaneous scalarization” is a distinctive manifestation of gravitational
interactions in the strong-field regime. Einstein Scalar-Gauss-Bonnet (ESGB)
gravity is the higher-order theory up to quadratic order in the curvature
invariants:

• Neutron star scalarization [Damour & Esposito-Farese ’93].

• Black hole scalarization [Silva et al ’18][Doneva & Yazadjiev ’18]

S =
1

16π

∫
d4x
√
−g
[
R − 2∇µϕ∇µϕ+ λ2f (ϕ)R2

GB

]

• Generalizations of the spontaneous scalarization framework: Coupled to R

[Brihaye et al ’19], coupled to Chern-Simons invariant [Brihaye et al ’19], flat

asymptotics [Doneva et al ’20], AdS/dS asymptotics [Bakopoulos et al ’19 &

’20][Brihaye et al ’20], holographic applications in AdS [Kiorpelidi et al ’20][Brihaye

et al ’20], f(R) [E. Papantonopoulos ’21], spin induced black hole spontaneous

scalarization [D. Doneva, L. Collodel ’20]
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ESGB can not provide black hole scalarization without an unstable cosmological

background.

• Is it possible to construct a theory beyond ESGB gravity as an EFT?

• Is there a theory able to reconcile black hole scalarization with a stable

cosmology?

• Is scalarization of astrophysical black holes possible?

3



Along this talk we want:

• To address a scalar-tensor EFT that exhibits curvature-induced scalarization for

black hole solutions, triggered by a set of suitable invariants made up of

Riemann tensor, up to cubic order

• To investigate within this framework, how the new operators modify a

catastrophic instability triggered by quantum fluctuations during the inflationary

stage in ESGB theory

• To explore the Big Bang Cosmology (BBC) of the model, and check that GR is

indeed a late-time cosmological attractor as experiments seem to demand
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The model and black hole scalarization

• We want to consider a theory that exhibits scalarization triggered by

higher-order curvature operators other than the Gauss-Bonnet invariant.

• For definiteness, we will consider the so-called Einsteinian Cubic Gravity (ECG)
theory [Bueno, Cano ’16], which possesses some basic “good” properties such as:

• Having a spectrum identical to that of Einstein gravity, i.e., the metric

perturbation (on a maximally symmetric background) propagates only a

transverse massless graviton.

• It is neither topological nor trivial in four dimensions.

• It is defined such that it is independent of the number of dimensions.

7



Cubic operators

• We start by recalling the cubic operator P in ECG theory, which reads

P = 12R ρ σ
µ ν R γ δ

ρ σ R µ ν
γ δ + R ρσ

µν R γδ
ρσ R µν

γδ − 12RµνρσR
µρRνσ + 8RνµR

µ
ρR

ρ
ν ,

while the operator C, found in GQTG [Hennigar et al ’17], is given by the

combination

C = RµνρσR
µνρ

δR
σδ − 1

4
RµνρσR

µνρσR − 2RµνρσR
µρRνσ +

1

2
RµνR

µνR.

• It has been proven that it is the exact combination P − 8C, the one that leads

to cosmologies with a well-posed initial value problem [Arcienaga et al ’20].

• In order to explore the phenomenon of scalarization we must include a scalar

field ϕ, while keeping the healthy features of ECG.
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The action of Scalar Einsteinian Cubic Gravity (SECG)

• For simplicity, we impose a ϕ→ −ϕ (discrete) symmetry. The action of the

theory is then given by

S [gµν , ϕ] =

∫
d4x
√
−g
[
M2

Pl

2
R +

α

M2
Pl

(P − 8 C)− 1

2
gµν∇µϕ∇νϕ+ f (ϕ/MPl) I + · · ·

]
.

[“Scalar-Einsteinian Cubic Gravity” (SECG)]

• Here, f (ϕ/MPl) is a dimensionless “coupling function” between the canonically

normalized scalar field ϕ and a set of curvature invariants given by

I = −βM2
PlR + γ G − λ

M2
Pl

(P − 8C) ,

where G is the well-known Gauss-Bonnet operator

G ≡ RµναβR
µναβ − 4RµνR

µν + R2.

• The dimensionless coupling constants α, β, γ, and λ are expected to be O(1)

numbers (“naturalness” argument).
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Field equations

• We will not set the (reduced) Planck scale MPl = 2.4× 1018 GeV to unity as it

is usually done in the literature since we want to keep track of it to easily

emphasize its role of being the ultimate EFT cut-off of any gravitational system.

• The EOM that stem from extremizing the action S [gµν , ϕ] =
∫
d4x
√
−g L read

RαβρµPνραβ + 2∇α∇βPαµνβ +
1

2
∇µϕ∇νϕ+

1

2
gµνL = 0 ,

�ϕ+ f,ϕ (ϕ/MPl) I = 0 ,

where Pαβµν ≡
∂L

∂Rαβµν
.

• The EOM for the scalar field fluctuation δϕ ≡ ϕ− ϕ0 is given by[
�+ f,ϕϕ(ϕ0/MPl) I

]
δϕ = 0,

where ϕ0 is the scalar field background, while the d’Alembertian operator and I
are computed in a fixed background.
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• We need to demand that f,ϕ(0) = 0 so that GR vacuum solutions together with

ϕ0 = 0 are admissible solutions of the field equations.

• Moreover, f,ϕϕ(0) > 0 is necessary for the emergence of a tachyonic instability,

which triggers the spontaneous scalarization.

• Without loss of generality we then take f (x) = 1
2
x2 + . . ., implying a scalar field

fluctuation effective mass squared given by

m2
eff = −f,ϕϕ (ϕ0/MPl) I = βR − γ

M2
Pl

G +
λ

M4
Pl

(P − 8C) .

• We are interested in models that exhibit spontaneous scalarization around

compact objects such as Schwarzschild black holes for which R = 0 and G > 0.

As the cubic operator is further suppressed by the cut-off for natural values of λ,

this implies the condition γ > 0. Hereafter, we will take γ > 0.
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• Scalar field fluctuations evolve according to

[�+ f,ϕϕ (ϕ0/MPl) I] δϕ = 0

• Perturbations on a fixed Schwarzschild background,

δϕ =
u(r)

r
e−iωt Ylm (θ, φ).

• In tortoise coordinates r∗, the Klein-Gordon equation becomes

“Schrödinger-like”, meaning

d2u

dr 2
∗

+ ω2u = Veff(r)u,

where the effective potential Veff is,

Veff(r) =
(

1− rg
r

)( l(l + 1)

r 2
+

rg
r 3
− γ

M2
Pl

12 r 2
g

r 6
+

λ

M4
Pl

84 r 3
g

r 9

)
.
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• It can be shown that there exists a sufficient condition for the existence of an

unstable mode given by [Buell and Shadwick ’95]∫ ∞
rg

dr
Veff(r)(
1− rg

r

) < 0,

where rg ≡M/4πM2
Pl, and M stands for the black hole mass.

• The above condition implies that a Schwarzschild background is unstable for a

specific range of masses.

• The maximum mass M of Schwarzschild black holes that may be scalarized is

MMAX ∼ 10−37M� ,

precluding any possibility of such a version of SECG theory to be compared with

observations. We will have more to say about this soon enough.
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Perturbations on a FLRW Background

• In a FLRW background with metric

ds2 = gµν dx
µdxν = −dt2 + a(t)2δij dx

idx j , and H ≡ ȧ

a
,

it so happens that the EOM for the fluctuation reads

δϕ̈+ 3Hδϕ̇− ∇
2δϕ

a2
+ m2

eff δϕ = 0 .

• For a FLRW spacetime

R = 6
(

2H2 + Ḣ
)
, G = 24H2

(
H2 + Ḣ

)
, P − 8C = −48H4

(
2H2 + 3Ḣ

)
,

so that the effective mass squared becomes

m2
eff = 6β

(
2H2 + Ḣ

)
− 24 γ

M2
Pl

H2
(
H2 + Ḣ

)
− 48λ

M4
Pl

H4
(

2H2 + 3Ḣ
)
.
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Einstein Scalar Gauss-Bonnet gravity revisited (β = λ = 0)

• In the ESGB theory the effective squared mass (recall that γ > 0)

m2
eff = − γ

M2
Pl

G (Schwarzschild background)

m2
eff = −24 γ

M2
Pl

H2
(
H2 + Ḣ

)
= −24 γ

M2
Pl

H2 ä

a
(FLRW background)

Problems in ESGB:

• m2
eff < 0⇐⇒ ä > 0 implies the existence of a tachyonic instability during any

(quasi)-de Sitter (dS) phase of our universe.

• The possibility of scalarizing astrophysical compact objects, e.g., neutron stars,

introduces a hierarchy problem since it requires γ ∼ 1074.

• tinst

tinf
∼ 10−34 implies that inflation is not compatible with the phenomenon

of black hole scalarization

• From an EFT point of view a linear term on Ricci scalar must nonminimally

coupled to the scalar field i.e. β 6= 0
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Scalar Einsteinian Cubic Gravity

In order to cure the the highly unnatural value for γ we need to introduce a new

scale M within the coupling sector operators.

S [gµν , ϕ] =

∫
d4x
√
−g
[
M2

Pl

2
R +

α

M2
Pl

(P − 8 C)− 1

2
gµν∇µϕ∇νϕ+ f (ϕ/M) I

]
[“Scalar-Einsteinian Cubic Gravity” (SECG)] with

I = −βM2R + γ G − λ

M2
(P − 8C) .

• Now the effective squared mass for Schwarzschild and FLRW background is,

repectively,

m2
eff = − γ

M2
G +

λ

M4
(P − 8C)

m2
eff = 12

[
β
(

1− ε

2

)
− 2 γ (1− ε)χ− 8λ

(
1− 3

2
ε

)
χ2

]
H2, with χ ≡

(
H

M

)2

.
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Some good properties of SECG

• Tachyonic instability is removed during any (quasi)-de Sitter (dS) phase of our

universe provided β > 0

• Scalarization of astrophysical black holes with characteristic length scale

L ≡ M−1 ∼ 10 km requires γ ∼ 10−2 in agreement with naturalness

argument.

• Maximum mass allowed for scalarized black holes grows up to

MMAX ∼ 180M�.

• Unlike ESGB, scalarization in SECG scenario is restricted by an upper bound

of the curvature at the event horizon,

KH

M4
Pl

∈
[

3072π4

q2
+

,
3072π4

q2
−

]
if 0 < λ ≤ 48

175
γ2,

KH

M4
Pl

∈
[

0,
3072π4

q2
−

]
if λ ≤ 0.
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General Relativity as a Cosmic Attractor

• The scalar EOM in a FLRW background is given by

ϕ̈+ 3Hϕ̇+ m2
eff ϕ = 0 where m2

eff = βR − γ

M2
G +

λ

M4
(P − 8C)

while the “t-t” Einstein equation reads

M2
PlGtt = ρeff + ρa,

with

ρeff ≡ ρPC + ρϕ, ρPC = −48α

M2
Pl

H6,

ρϕ =
1

2
ϕ̇2 + 6

(
β − 4 γ χ− 24λχ2

)
Hϕϕ̇+ 3

(
β + 8λχ2

)
H2ϕ2, and χ ≡ (H/M)2.

• We shall demand usual cosmic evolution, i.e.

ρa ≈ 3M2
PlH

2,

with ρa = {ρr, ρm, ρde}
• Since we do not want ϕ to play any role in late-time cosmology, we shall assume

that

ρϕ � ρa.

It is mandatory to check if such an assumption is dynamically consistent.
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Numerical integration

Numerical integration from cosmological redshift z = 0 to z = 1012

Figure 1: Top panel: Effective energy density ρϕ relative to the energy density of the cosmic

fluid ρa. Bottom panel: Scalar field value relative to its initial value fixed at zi = 1010. The

values of the coupling constants are taken to be γ = 1 and λ = 48/175

The solution is consistent with assumption ρϕ(z)≪ ρa(z) for the whole range of

numerical integration.
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Evolution of scalar field

• During early times, or high redshift, m2
eff dominates over Hubble friction within

the scalar field equation. However, as we “move” forward in time, m2
eff decays

much faster than the Hubble friction which rapidly takes over, so it is expected

that the scalar field freezes to a constant way before entering MD era.

• For even higher redshift values the relative scalar field and the relative energy

density oscillate with ever increasing frequency as can be seen in figure ??.

• During radiation domination (RD) the scalar field is completely insensitive to the

value of β as the Ricci scalar identically vanishes, while the relative energy

density does marginally depend on such a constant even though all the curves,

for high enough z , eventually converge.

• By the time the MD era begins, the Ricci scalar stops being trivial, and in fact it

entirely determines the relative scalar and energy density evolution because the

higher-order operators become irrelevant considering that χ ∼ 10−36 ≪ 1 when

z = 3600.
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As it was expected, the scalar field profile in SECG exhibits a manifest deviation from

its quadratic counterpart for very high cosmological redshifts, as can be appreciated

in the two following figures.

Figure 2: The continuous and dashed curves represent the profile stemming from ESGB and

SECG, respectively.

23



The Model and Black Hole Scalarization

Perturbations on a FLRW Background

General Relativity as a Cosmic Attractor

Ending remarks

24



Ending remarks

• We propose scalar-Einstenian Cubic Gravity as a scalar tensor theory constructed

as as an effective field theory where black hole scalarization is compatible

with a stable cosmological evolution.

• The introduction of a second scale M, which is associated with the

characteristic energy scale of a compact object to be scalarized, is necessary to

have “natural” coupling constants.

• After the introduction of such a scale, the scalarization bound was increased

from 10−37M� to 180M�.

• Unlike ESGB, scalarization in SECG scenario is restricted by an upper bound of

the curvature at the event horizon.

• We integrated the scalar field equation to find that SECG admits GR as a

cosmological attractor, under very sensible assumptions for the initial

conditions of the system.
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Thank you!
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Scalarization in Einstein Scalar-Gauss-Bonnet

that is why we have not plotted them. Moreover, it is
expected that only the first nontrivial branch characterized
by a scalar field without zeros will be stable, while the rest
of the branches correspond to unstable solutions. The
components of the metric gtt and grr for some represen-
tative solutions with different rH /λ are also plotted in the
bottom panel of Fig. 2 for the first nontrivial branch. As
one can see, they can deviate significantly from the
Schwarzschild one. We have not plotted gtt and grr for
the other nontrivial branches, since they are practically
indistinguishable from the pure general relativistic case.
The dilaton charge as a function of the mass is shown in

Fig. 3. While the dependence φH ðM/λÞ is monotonic for the
first nontrivial branch and φH increases significantly for
small masses, D ðM/λÞ has an extremum (either minimum
or maximum depending on the sign of φH ) and tends to
zero for small masses.
The area of the black-hole horizon, AH ¼ 4πr2H , is

plotted as functions of the mass in the top panel of
Fig. 4 for all of the considered branches of solutions.
Only the first branch of nontrivial solutions differs signifi-
cantly from the Schwarzschild case, and the deviations are
the largest for intermediate masses. This observation is
similar to the behavior of the dilaton change.
In order to have an indicator for the stability of the black-

hole branches, one can study the entropy of the black holes.
The black-hole entropy in the presence of a Gauss-Bonnet
term in the action (1) is not just one fourth of the horizon
area and its definition is a little bit more complicated. We

adopt the entropy formula proposed by Wald and co-
worker in [19,20], namely,

SH ¼ 2π
Z

H

∂L
∂Rμναβ

ϵμνϵαβ; ð16 Þ

where L is the Lagrangian density and ϵαβ is the volume
form on the two-dimensional cross section H of the
horizon. In our case, we find SH ¼ 1

4AH þ 4πλ2fðφH Þ.
The entropy as a function of the black hole’s mass is plotted
in the bottom panel of Fig. 4. The first nontrivial branch has
an entropy larger than the Schwarzschild one and it is
therefore thermodynamically more stable. This is an
expected result since, for masses smaller than the point
of the first bifurcation, the Schwarzschild solution will get
unstable and there should be another one. The second and
the third nontrivial branches, on the other hand, have lower
entropy compared to the pure general relativistic case,
which means that they are most probably unstable. The
same is expected to apply for the rest of nontrivial branches

FIG. 2. (Top) The scalar field as a function of the normalized
radial coordinate r/rH for several black-hole solutions belonging
to the first nontrivial branch. (Middle) The scalar field as a
function of the normalized radial coordinate r/rH for black-hole
solutions belonging to the second and third nontrivial branches.
(Bottom) The gtt and grr components of the metric as functions of
the normalized radial coordinate r/rH for several black-hole
solutions belonging to the first nontrivial branch.

FIG. 3. The dilaton charge of the black hole as a function of its
mass. The notations are the same as in Fig. 1.

FIG. 4. (Top) The area of the black-hole horizon AH as a
function of the mass. (Bottom) The entropy of the black hole as a
function of its mass.
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