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Background

• Schwarzschild interior for incompressible fluid (1916). 
• Oppenheimer-Snyder collapse of homogeneous body 

(1939)
• Lemaitre-Tolman-Bondi (LTB) solutions 
• Slow-collapse approximation (Bondi, Misner +Sharp)
• Penrose Conjecture
• Joshi
• Lynden-Bell, Bicak (2017).
• Price-Cunningham-Moncrief (1980). Abbreviated P-C-M.
• Darmois Matching Conditions – ‘metric and derivatives’



Aims of this lecture 

• Review of the spherical Oppenheimer-Snyder and 
Incompressible interiors.

• Convert Oppenheimer-Snyder interior into Gaussian 
Coordinates, and use this for both outer and inner layer.

• Attempt to perform Darmois matching between the two 
layers, but encounter a limitation. 

• Instead, investigate the somewhat simpler problem of a 
static two-layer incompressible body, and describe what a 
slow-collapse through equilibrium states could look like.

• Outline how this could be extended to non-spherical cases.  



Static Incompressible Interior 
• The simplest description of a static interior with pressure.
• Incompressibility (μ=constant) is a good approximation for 

liquid-like behavior, e.g. Neutron Stars (but not ‘gas-like’). 
•  +  (Ω = solid angle)
• Three field equations essentially amount to i) Hydrostatic 

Equilibrium, and ii) Conditions on dt and dr coefficients.
•   
• Once solved, the Darmois matching conditions must be 

applied. They reduce to matching of pressure (which = 0 
for vacuum), as well as metric coefficients  and .



Oppenheimer-Snyder collapse 
• The simplest interior solution that describes spherical 

collapse. Again  μ=constant, but pressure is zero.
• A strong requirement is that different layers of the star must 

stay ‘in line’ with each other and do not overtake. 
• Metric expressed in ‘synchronous’ comoving coordinates
•  +   (Ω=solid angle)
• Apply Darmois matching conditions to match with 

Schwarzschild exterior. Geodesic equation for boundary.
• Smooth onset of Horizon and Trapped Surface for O-S. 

But not so in LTB solutions!



Two-layer setup 
• a (on diagram) is denoted  in our equations. ‘Boundary’
• b (on diagram) is denoted  in our equations. ‘Interface’

 



Two-layer OS collapse  
• It is more useful to use Gaussian (boundary) Coordinates for 

matching between two dust layers of different densities. 
• Create alternative radial coordinate: Let  
• O-S metric becomes +
• The coordinates can now be ‘continued’ across layers.
• Outer metric +
• Inner metric +
•  and bare their respective scale factors. 



Two-layer OS collapse  
• In the Gaussian Coordinate system (only), the Darmois 

Matching Conditions reduce to the matching of the metric 
components and their normal derivatives.

• Actually, theand coefficients are already matched, so only the 
angular metric coefficients and their R derivatives need to be 
matched at the interface  .

• Matching of outer layer to the vacuum proceeds in the usual 
manner.

• Matching both angular metric coefficients at  gives 
• = b



Two-layer OS collapse  
• While matching the normal derivatives results in
• 2b = 2a
• The above expression can be simplified using earlier result 
• = b
• to produce b 
• So the two layers must collapse at the same rate? The 

combined entity then behaves like a single entity? Original 
integration of the O-S equation may need to be revisited!

• Instead, we now focus on a two-layer incompressible fluid. 



Two-layer Incompressible
• Pursue a similar solution procedure to Stephani book (2004): 
• Inner layer metric will be the same as the original metric:
•  +  
• While the metric for the outer layer will have an extra piece 

for both λ and ν (and the pressure):
• Field Equation for λ (  denotes r-derivative):
• , (μ = mass density), let  
• Integrate, , g is a constant. Typically, g would represent a 

diverging term at r=0, but we shall keep it.



Two-layer Incompressible
• To deal with the Field Equation for ν, 
• , where 
• Let  . End up with following ode (RHS extra σ!):

• This o.d.e. can be solved iff g=0

• But cannot solve the g≠0 case in closed form!



Two-layer Incompressible
• One possible way forward is to assume that the quantity g 

is small compared to the other coefficients in the ode.
• By comparing with the ‘mass function’ used in other 

treatments of the zero-order case, our new approximation 
would correspond to an inner boundary that is close to r=0. 

• Indeed, the quantity  in  looks suspiciously like a ‘mass’ 
term, possibly the total mass of the inner layer.

• Therefore, let ,  and   
•  and B now correspond to the well-known zero-order case 

describing a single layer. 



Two-layer Incompressible
• It has now been established that under our new 

approximation, the inner layer must have a small 
(coordinate) radius compared to the outer layer.

• Inner layer is effectively a core, or ‘dweller in the depths’.
• Solve the first order equation for the outer layer to obtain:
• ,

• k, A, B, D are zero-order constants. E, b, g are first order.



Two-layer Incompressible
• On the other hand, the inner core solution is basically of 

the same form as the single-layer case.
• ,
•
• ρ is the (rest) mass density of the inner core, while β and δ 

are integration constants.
• Apply Darmois conditions, and match both metric 

components and the pressure at the interface (). 



Two-layer Incompressible
• Matching must take place in two separate stages:
• i) The zero-order outer layer, with constants B and D, must 

match as usual to the vacuum Schwarzschild, with constant 
m. At this stage the inner core is not considered.

• ii) Once the above has taken place, the inner core with 
constants β and δ must match to the outer layer with 
constant g. Then, the outer layer with remaining constants 
E and b must match to the ‘perturbed’ Schwarzschild 
exterior, the latter possessing a constant Δm. 

• Obtain the inner interface  and the external boundary . 



Two-layer Incompressible
• Our result must be converted so that it can be used as a ‘initial 

value matching’ for the Oppenheimer-Snyder collapse. Once 
again use the hybrid Synchronous-Gaussian form.

• Create alternative radial coordinate: Let   and substitute . 
Similarly, .

• dt conversion is simple, but find that the dr integral cannot be 
evaluated in closed form; for small g the integral can be Taylor-
expanded about the single-layer case, and then inverted for r.

• where 



Implications 
• Having obtained our static incompressible metrics for both the 

outer and inner layers, we can ask the following question: For 
what value of  does the central pressure diverge? 

• Even if  is still outside r=2M (and also the Buchdahl limit), 
would it allow the density of the inner core to be above the 
critical mass density, provided that the average mass density over 
both layers remains below the critical density?

• Then consider a slow collapse of the combined body, such that it 
passes through a sequence of static states. But likely to cease 
being valid when the central pressure gets too high!

• Could the analysis for the static case shed new clues on the 
Oppenheimer-Snyder collapse? 



Non-spherical Collapse 
• Price-Cunningham-Moncrief (1980) perturbed the O-S 

solution to second-order in the rotation speed. Darmois 
Matching Conditions proved difficult in closed form.

• Provided that the earlier issue for spherical collapse can be 
resolved, we could imagine perturbing the two dust layers 
with rotation, and Darmois matching them using the earlier 
(perturbed) Gaussian-Synchronous coordinates instead?

• If the inner layer does produce a naked singularity, then the 
emitted Gravitational Waves will carry this information.

• Convert vacuum metric to Bondi-Sachs coordinates, which 
have invariant meaning (c.f. stationary Weyl coordinates).



Tasks still remaining  
• Investigate slow collapse of (quasi) incompressible body.
• Resolve the issue in the Oppenheimer-Snyder collapse, and 

apply the two-layer setup to P-C-M non-Spherical collapse. 
Express vacuum in Bondi-Sachs form.

• On a somewhat different note, for a single body investigate 
the slow collapse of the quasi-incompressible interior, then 
match it at late times to constant pressure O-S collapse. 
Compare the result against the O-S dust collapse matched at 
late times to O-S pressure collapse. Then…

• …for late-time non-Spherical P-C-M, match dust to pressure.
• Papers to be published!
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