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Talk outline

• Motivation 

• Coordinates adapted to the evolving horizon 

• Expanding the field equations near the horizon 

• Accretion law 

• Instability of the Neumann solution 

• Approach to equilibrium and scaling relations 

• Outlook and conclusions
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Motivation

How does a black hole interact with the cosmic medium? 
What is the influence of cosmological evolution on the growth of the horizon? 

(previous approaches: McVittie, Bondi, Einstein-Straus, Husain-Martinez-Nuñez, …) 

Can we give an analytic description of a physically realistic evolving BH? 
(e.g., in asymptotic flatness, or in a cosmological spacetime) 

The horizon is part of the unknowns of the problem, but is only 
determined a posteriori from the solutions. 

Is there a way to make it appear explicitly in the equations?

Our goal
Develop a general method to study the near-horizon asymptotics of evolving BHs 

that can be applied for any matter fields and spacetime asymptotics 
(in spherical symmetry)

We consider a scalar field as matter, both for simplicity and for its relevance in inflation.
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Eddington-Finkelstein coordinates (1)
A general spherically symmetric geometry can be written in EF coordinates

ds2 = − e2β(v,r)A(v, r)dv2 + 2eβ(v,r)dvdr + r2dΩ2

 is the areal radius,  is an ingoing null coordinater v

For a BH, these coordinates are regular at the BH horizon

The apparent horizon is determined by 
 A(v, r) = 0 ⟺ θl = 0

We must also ensure that  and , so that the apparent horizon 
is a future outer trapping horizon [Hayward ‘94] 

θn < 0 £nθl < 0
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Eddington-Finkelstein coordinates (2)

The equation  implicitly defines the horizon as a function of  : A(v, r) = 0 v
rH = rH(v)

The main problem with these coordinates is that the apparent horizon can only be 
determined a posteriori, once we have found a solution to the field equations.

In case there are multiple branches, we may take the outermost one.

We need to ‘extract’ the information on the zeroes of .A
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New coordinates adapted to the evolving horizon
It is convenient to adopt a new radial coordinate  that is adapted to the evolving horizon z

r =
rH(v)
1 − z

In the new coordinates, the horizon is at , while spatial infinity is at .z = 0 z = 1

In the static case it reduces to [Rezzolla, Zhidenko ’14]

ds2 = (−e2β(v,z)A(v, z) +
2eβ(v,z) ·rH(v)

1 − z ) dv2 +
2eβ(v,z)rH(v)

(1 − z)2
dvdz +

r2
H(v)

(1 − z)2
dΩ2

In the new coordinates, both relevant variables  and  feature explicitlyz ·rH(v)

proximity expansion rate

The main advantage is that  now appears explicitly in the metric 
(no longer indirectly through )

rH(v)
A
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Einstein-scalar system
Gab = κ Tab = κ [∂aϕ∂bϕ − gab ( 1

2
gcd∂cϕ∂dϕ + U(ϕ))]

in the coordinates  the field equations read:(v, z)

2β′ = κ(1 − z)(ϕ′ )2 ,

1 − A − (1 − z)(A′ + Aβ′ ) =
κr2

H

(1 − z)2
U(ϕ) ,

·A
1 − z

−
·rH

rH
A′ = κ (

·rH

rH
ϕ′ −

·ϕ
1 − z ) (1 − z)ϕ′ A − e−βrH (

·rH

rH
ϕ′ −

·ϕ
1 − z ) ,

2β′ ′ A + A′ ′ + β′ (3A′ + 2β′ A) −
2e−βrH

1 − z (
·rH

rH
β′ ′ −

·β′ 

1 − z ) =
κe−β rHϕ′ 

1 − z (
·rH

rH
ϕ′ −

2 ·ϕ
1 − z ) −

2κ r2
HU(ϕ)

(1 − z)4
.

Klein-Gordon equation:

·ϕ′ +
·ϕ

1 − z
−

·rH

rH
(1 − z)ϕ′ ′ +

eβ(1 − z)2

2rH
(Aϕ′ ′ + A′ ϕ′ + Aϕ′ β′ ) −

eβrH

2(1 − z)2

∂U
∂ϕ

= 0
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-expansionz
We expand the equations in the proximity of the horizon, assuming that 

both matter and geometry are regular around z = 0

Ansätze: analiticity in z

A(v, z) =
∞

∑
n=1

an(v)zn , β(v, z) =
∞

∑
n=1

bn(v)zn , ϕ(v, z) = ϕo(v)(1 +
∞

∑
n=1

cn(v)zn)
NB:  is a gauge choice and b0(v) = 0 a1 > 0 ⟺ £nθl < 0

Substitute the ansätze in the field equations and expand.

To first order in , the solutions are: z

a1 = 1 − κ r2
HU(ϕo) > 0 , b1 =

1
2

κc2
1ϕ2

o , a1
·rH = κ (c1ϕo

·rH − rH
·ϕo)

2

Higher order coefficients can similarly be computed, complications are only algebraic.
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Physical meaning on the first-order solutions
To gain some insight, let us compute the fluxes in the radial null directions at  z = 0

Tabnanb =
c2

1 ϕ2
o

r2
H

Tablalb = ( ·ϕo − c1ϕo

·rH

rH )
2

·rH =
κ r2

H

1 − ℰ
Tablalb =

κ r2
H

1 − ℰ
(£lϕ)2 ≥ 0

Combining this with the first-order solution, we get the accretion law

outgoing flux ingoing flux

ℰ ≡ κ r2
HU(ϕo) = r2

HΛeff

This result is consistent with the area theorem 

It can be rewritten as a “Bondi-like” accretion formula

·M =
16πG2

1 − ℰ
M2(£lϕ)2

Other geometric derivations: 
[Ashtekar, Krishnan ‘04; Booth et al. ’06]
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Neumann boundary conditions
The scalar field obeys the boundary condition  

(equivalent to the condition  at )

(∂zϕ)|z=0 = 0 ⟺ c1 = 0
Tabnanb = 0 z = 0

This solution does not admit a static limit

b3 =
((1 − ℰ)rH

·ℰ − 2𝒦)
2

24𝒦3

R =
1
r2
H

4ℰ + [2 − rH(1 − ℰ)
·ℰ

𝒦 ] z + 𝒪(z2)

ℰ ≡ κ r2
HU(ϕo) , 𝒦 ≡ κ r2

H( ·ϕo)2

In the  limit, these quantities diverge 
(they are not the only ones)

·ϕo → 0

This shows that the outgoing flux cannot be zero at all times, but 
only relaxes to zero in the static limit.
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Approaching equilibrium (1)
We expand the equations around a static solution

rH(v) = r(0)
H + r(1)

H (v) + r(2)
H (v) + …

A(v, z) = A(0)(z) + A(1)(v, z) + A(2)(v, z) + … ,
β(v, z) = β(0)(v) + β(1)(v, z) + β(2)(v, z) + … ,
ϕ(v, z) = ϕ(0) + ϕ(1)(v, z) + ϕ(2)(v, z) + … .

ϕo(v) = ϕ(0) + ϕ(1)
o (v) + ϕ(2)

o (v) + … [ϕ(n)
o (v) = ϕ(n)(v,0)]

horizon

dynamical 
fields

scalar field 
at the horizon

A(0)(z) = z +
κ
3

(r(0)
H )2U(ϕ(0))[(1 − z) −

1
(1 − z)2 ] , β(0)(v) = 0

Schwarzschild-de Sitter as a static background:

∂U
∂ϕ

ϕ(0)

= 0the scalar field must be in equilibrium:

(similar in spirit to a non-linear generalization of quasi-normal modes)
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Approaching equilibrium (2)
We perform a double expansion: 

analytic ansatz in  at each order in the perturbative series  z

A(n)(v, z) =
∞

∑
k=1

a(n)
k (v)zk , β(n)(v, z) =

∞

∑
k=1

b(n)
k (v)zk ϕ(n)(v, z) = ϕ(n)

o (v) +
∞

∑
k=1

l(n)
k (v)zk

To second order in perturbation theory and in the -expansion, the solution is:z

A(v, z) = 1 − κ (r(0)
H )2 U(ϕ(0)) +

1
2

∂2U
∂ϕ2

ϕ(0)

(ϕ(1)
o )2 + 2r(0)

H r(2)
H U(ϕ(0)) z

−κ (r(0)
H )2 (1 −

κ
4 (l(1)

1 )
2) U(ϕ(0)) +

1
2 (ϕ(1)

o + l(1)
1 ) ϕ(1)

o
∂2U
∂ϕ2

ϕ(0)

+ 2r(0)
H r(2)

H U(ϕ(0)) +
1
4 (l(1)

1 )
2

z2 + …

β(v, z) =
κ
2 (l(1)

1 )
2

z −
κ
4

l(1)
1 (l(1)

1 − 4l(1)
2 ) z2 + … ,

ϕ(v, z) = (ϕ(0) + ϕ(1)
o + ϕ(2)

o ) + (l(1)
1 + l(2)

1 ) z + (l(1)
2 + l(2)

2 ) z2 + … .

Note that the second order solution for the geometry depends on , 
although not on higher order corrections to the scalar field.

ϕ(1)
o , l(1)

1 , l(1)
2

This amounts to mapping the Einstein equations to a (infinite-dimensional) dynamical system 
for the variables {r(n)

H , ϕ(n)
o , a(n)

k , b(n)
k , l(n)

k }
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Approaching equilibrium (3)
The remaining coefficients satisfy the following dynamical equations  

·l(1)
1 = − ·ϕ(1)

o +
r(0)
H

2
ϕ(1)

o
∂2U
∂ϕ2

ϕ0)

−
l(1)
1

2r(0)
H

(1 − κ (r(0)
H )2U(ϕ(0))) ,

·l(1)
2 =

r(0)
H

4
ϕ(1)

o
∂2U
∂ϕ2

ϕ(0)

+
l(1)
1

4r(0)
H

3 − (r(0)
H )2 κ U(ϕ(0)) −

∂2U
∂ϕ2

ϕ(0)

−
l (1)
2

r(0)
H

(1 − κ(r(0)
H )2U(ϕ(0)))

·r(2)
H =

κ(r(0)
H )2

1 − ℰ(0)
( ·ϕ(1)

o )2

NB:  is still undetermined at this stage (boundary data), while ·ϕ(1)
o

·r(1)
H = 0

Tabnanb

z=0
≃

(l(1)
1 )2

(r(0)
H )2

, Tablalb

z=0
≃ ( ·ϕ(1)

o )2

From the  equation, we see that setting  implies that the scalar field must climb up 
the potential! This explains the absence of a static limit for the Neumann solution.

·l(1)
1 l(1)

1 = 0
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Approaching equilibrium (4)

Following the structure of the  equation, we propose:·l(1)

With this assumption, the dynamics boils down to the following autonomous dynamical system 

r(0)
H

·ϕ(1)
o = − γ ϕ(1)

o + ξ l(1)
1 ,

r(0)
H

·l(1)
1 = γ +

(r(0)
H )2

2
∂2U
∂ϕ2

ϕ(0)

ϕ(1)
o −

1
2 (1 − ℰ(0) + 2ξ)l(1)

1

r(0)
H

·ϕ(1)
o = − γ ϕ(1)

o + ξ l(1)
1

The solution  is an attractive fixed point  provided that:ϕ(1)
o = l(1)

1 = 0

2(γ + ξ) + 1 − ℰ(0) > 0 , 0 < γ (1 − ℰ(0)) − ξ(r(0)
H )2 ∂2U

∂ϕ2
ϕ(0)

≤
1
8 [2(γ + ξ) + 1 − ℰ(0)]

2

In the large time limit, we get (  is the least negative eigenvalue)  λ1

ϕ(1)
o (v) ∼ p eλ1v/r(0)

H , l(1)
1 (v) ∼ ξ−1p(γ + λ1) eλ1v/r(0)

H , r(2)
H (v) ∼ ΔrH +

κp2λ1

2(1 − ℰ(0))
r(0)
H e2λ1v/r(0)

H
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Approaching equilibrium (5)

We obtain the following scaling relations

rH(v) − r f
H

r(0)
H

∼ κ(ϕ(1)
o (v))2 , l(1)

1 (v) ∼ ϕ(1)
o (v)

These are “universal” since they do not depend (except for prefactors) on 
the shape of the potential, boundary data, etc

Potentially testable with numerical simulations

(However, they do depend on our modelling of  as a linear combination of   )·ϕ(1)
o ϕ(1)

o , l(1)
1
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Summary
• We introduced a new radial coordinate  adapted to the evolving horizon 

• The equations of motion can be solved order by order in . The first order solution gives an 
exact Bondi-like accretion law. 

• The solution with Neumann boundary conditions at the horizon does not admit a static 
limit. 

• Near-equilibrium black-holes can be studied introducing a double expansion (perturbative 
and in ). The Einstein equations are mapped to an infinite-dimensional dynamical system. 

• The approach to equilibrium is characterized by universal scaling relations.

z = 1 − rH(v)/r

z

z

Future work
• Matching the near-horizon solutions to the region far from the BH 

• Similar analysis for different matter fields (e.g., hydrodynamic matter, gauge fields) and for 
alternatives to general relativity 

• Going beyond spherical symmetry


