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State of the knowledge

• 1916 K. Schwarzschild - the first vacuum solution of Einstein’s

equations.

• 1917 J. Droste - independently produced the same solution as

Schwarzschild. Additionally solved equations of motion of test

particles using Weierstrass elliptic functions.

• 1930 Y. Hagihara - gave a full description of the motion of test

particles based on Droste’s work.

• 1959-62 C. Darwin, J. Plebański, B. Mielnik - description of the

geodesic motion in the language of Jacobi elliptical functions.

• 2011 G. Scharf - description of the geodesic motion using the

simplified Biermann Weierstrass formula.

• 2014 U. Kostić - elegant description in a modern language.
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Metric
We will work in spherical coordinates (t, r , θ, φ). In its simplest form the

Schwarzschild metric is written as

g = −Ndt̄2 +
dr̄2

N
+ r̄2dθ2 + r̄2 sin2 θdφ2,

where

N = 1− rs
r̄
,

and rs = 2M is the Schwarzschild radius.

In order to avoid irregularities at the horizon, we choose a new time

foliation

t = t̄ +

∫ r̄ [ 1

N(s)
− η(s)

]
ds, r = r̄ ,

where η = η(r̄) is a function of radius r̄ , yields the metric in the form

g = −Ndt2+2(1−Nη)dtdr + η(2−Nη)dr2+ r2dθ2+ r2 sin2 θdφ2. (1)
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Equations of motion
There are many ways to get the equations of motion, e.g., Hamilton’s

equations. We can write down the particle equation of motion as

dξ

ds
=ϵr
√
ε2 − Uλ(ξ), (2a)

dψ

ds
=
λ

ξ2
, (2b)

dτ

ds
=

ε

N(ξ)
+ ϵr

1− N(ξ)η(ξ)

N(ξ)

√
ε2 − Uλ(ξ). (2c)

where N(ξ) = 1− 2/ξ,

τ = t/M, ξ = r/M, πξ = pr/m, πθ = pθ/Mm, ε = E/m, λ = l/Mm

are dimensionless variables and the dimensionless effective potential

Uλ(ξ) =

(
1− 2

ξ

)(
1 +

λ2

ξ2

)
= 1− 2

ξ
+
λ2

ξ2
− 2λ2

ξ3
,

and ϵr = ±1,corresponds to the direction of motion.
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Solution of equations of motion
Given the form of Eqs. (2), it is natural to treat ψ as a parameter and search for the
solution of the form ξ = ξ(ψ). From (2a) and (2b) we get immediately

dξ

dψ
= ϵr

ξ2

λ

√
ε2 − Uλ(ξ) = ϵr

√
ε2 − 1

λ2
ξ4 +

2

λ2
ξ3 − ξ2 + 2ξ. (3)

Defining
f (ξ) = a0ξ

4 + 4a1ξ
3 + 6a2ξ

2 + 4a3ξ + a4, (4)

where

a0 =
ε2 − 1

λ2
, 4a1 =

2

λ2
, 6a2 = −1, 4a3 = 2, a4 = 0, (5)

one can write Eq. (3) as
dξ

dψ
= ϵr

√
f (ξ). (6)

For a segment of the trajectory for which ϵr is constant, we get

ψ = ϵr

∫ ξ

ξ0

dξ′√
f (ξ′)

, (7)

where ξ0 is an arbitrarily chosen radius corresponding to the angle ψ = 0.
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Theorem (Biermann-Weierstrass)

Let

f (x) = a0x
4 + 4a1x

3 + 6a2x
2 + 4a3x + a4, (8)

be a quartic polynomial. Denote the invariants of f by g2 and g3, i.e.,

g2 ≡ a0a4 − 4a1a3 + 3a22, (9a)

g3 ≡ a0a2a4 + 2a1a2a3 − a32 − a0a
2
3 − a21a4. (9b)

Let

z(x) =

∫ x

x0

dx ′√
f (x ′)

, (10)

where x0 is any constant, not necessarily a zero of f (x).
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Then

x = x0 +
−
√

f (x0)℘
′(z) + 1

2 f
′(x0)

(
℘(z)− 1

24 f
′′(x0)

)
+ 1

24 f (x0)f
′′′(x0)

2
(
℘(z)− 1

24 f
′′(x0)

)2 − 1
48 f (x0)f

(4)(x0)
,

(11)

and

℘(z) =

√
f (x)f (x0) + f (x0)

2(x − x0)2
+

f ′(x0)

4(x − x0)
+

f ′′(x0)

24
, (12a)

℘′(z) = −
[

f (x)
(x−x0)3

− f ′(x)
4(x−x0)2

]√
f (x0)−

[
f (x0)

(x−x0)3
+ f ′(x0)

4(x−x0)2

]√
f (x),

(12b)

where ℘(z) = ℘(z ; g2, g3) is the Weierstrass function corresponding to

invariants (9).
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Application of the theorem

Therefore thanks to the Biermann-Weierstrass theorem, we can write the

formula for ξ = ξ(ψ) as

ξ(ψ) = ξ0+
−ϵr0

√
f (ξ0)℘

′(ψ) + 1
2 f

′(ξ0)
[
℘(ψ)− 1

24 f
′′(ξ0)

]
+ 1

24 f (ξ0)f
′′′(ξ0)

2
[
℘(ψ)− 1

24 f
′′(ξ0)

]2 − 1
48 f (ξ0)f

(4)(ξ0)
.

(13)

Here ℘ is understood to be defined by the invariants g2, and g3 given by

Eq. (9) for f defined in Eq. (6).

The above equation is a general solution to equation Eq. (3), and it is

valid for all types of allowed trajectories. Sign of ϵr0 is selected at the

initial position ξ0. After selecting it, we do not have to worry about

whether the particle is in front of its periapsis or not. It can be

checked numerically and demonstrated analytically.
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Properties of the effective potential
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Numerical tests
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Figure: Sample inner bound orbits (type IIa) for λ = 4.2. Solid color lines
correspond to solutions obtained with Eq. (13). Dotted lines depict
corresponding numerical solutions.
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Figure: Sample outer bound orbits (type IIb) for λ = 4.2. Solid color lines
correspond to solutions obtained with Eq. (13). Dotted lines depict
corresponding numerical solutions.
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Figure: Sample unbound absorbed orbits (type IIIa) for λ = 8. Solid color
lines correspond to solutions obtained with Eq. (13). Dotted lines depict
corresponding numerical solutions.
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Figure: Sample unobound scattered orbits (type IIIb) for λ = 9.68. Solid
color lines correspond to solutions obtained with Eq. (13). Dotted lines
depict corresponding numerical solutions.
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Proper time

Given an expression for ξ = ξ(ψ), the corresponding proper time can be

computed by integrating Eq. (2b), i.e., as

s(ψ) =
1

λ

∫ ψ

0

ξ2 (ψ′) dψ′. (14)

Integrating the square of expression (13) is, in principle, possible, but it is

tedious, and the result seems to be too complicated to be useful in

practical applications. Much simpler formulas can be obtained by siplified

verosion of using Eq. (13)

ξ(ψ) = ξ1 +
f ′(ξ1)

4
[
℘(ψ)− 1

24 f
′′(ξ1)

] ,
i.e., we describe the motion with respect to periapsis.
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The proper time elapsed during the motion from ψ = 0 o some ψ = ψ2

can be written as

s∗(ψ2, ξ1) =
1

λ

{
ξ21ψ2 +

1

2
f ′(ξ1)ξ1 [I1(ψ2; y)− I1(0; y)]

+
1

16
[f ′(ξ1)]

2
[I2(ψ2; y)− I2(0; y)]

}
, (15)

where ℘(y) = 1
24 f

′′(ξ1) or y = ℘−1
(

1
24 f

′′(ξ1)
)
, and,

I1(x ; y) =
1

℘′(y)

(
2ζ(y)x + ln

σ(x − y)

σ(x + y)

)
, (16)

I2(x ; y) = − 1

℘′2 (y)

(
ζ (x + y) + ζ (x − y) +

(
2℘ (y) +

2℘′′ (y) ζ (y)

℘′ (y)

)
x

)

− ℘′′(y)

℘′3(y)
ln
σ (x − y)

σ (x + y)
. (17)
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Consider a motion of a particle starting from an arbitrary location ξ0, and
moving inwards (in the dorection of the BH), up to a periapsis with the radius
ξ1. Next the particle moves outwards, up to a location with a radius ξ. Define
the angles ψ1 and ψ2 as

ψ1 = −
∫ ξ1

ξ0

dξ′√
f (ξ′)

=

∫ ξ0

ξ1

dξ′√
f (ξ′)

,

ψ2 =

∫ ξ

ξ1

dξ′√
f (ξ′)

.

Both angles satisfy ψ1 ≥ 0 and ψ2 ≥ 0. Let ψ = ψ1 + ψ2. Because of
symmetry, the proper time of the entire motion can be written as

s(ψ) = s∗(ψ1; ξ1) + s∗(ψ2; ξ2) = s∗(ψ1; ξ1) + s∗(ψ − ψ1; ξ1). (18)

Formula Eq. (18) can be understood as a replacement for integral Eq. (14)
with ξ(ψ) given by Eq. (13). Note that, since s∗(ψ2; ξ1) is an odd function of
ψ2, we get s(ψ = 0) = 0, as expected. It can also be checked that the same
formula holds for ξ1 corresponding to an apoapsis.
The coordinate time τ can be obtained in a way similar to the calculation
of the proper time s.
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Conclusion

• We have a new description of the motion of test particles, which

depends only on the constants of motion λ, λz , ε and the choice of

the initial position (ξ0, ψ0).

• The strengths of our description:
• one function ξ(ψ) for the entire trajectory and every type of
trajectory,

• the formula ξ(ψ) does not require the knowledge of turning
points,

• the expression for ξ(ψ) is analytic and it is given in terms of
well-known Weierstrass elliptic functions.

• The weakness of the description is that functions s(ψ) and τ(ψ) are

not analytical.

• The method was designed to work in simulations of the Vlasov gas

on the Schwarzschild background.
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