Hyperheavenly spaces and their application in para-Kähler geometries

Adam Chudecki*

*Center of Mathematics and Physics, Lodz University of Technology

September 17, 2022

- Integrable systems they admit ASD conformal structures¹
- Two solids rolling on each other without slipping or twisting^{2,3}
- A relation between para-Kähler Einstein spaces and non-integrable twistor distributions⁴

¹2010, Dunajski M., Solitons, Instantons and Twistors, Oxford University Press ²1993, Bryant R., Hsu L., Rigidity of integral curves of rank two distributions, Invent. Math. 114, 435-461

³2014, An D., Nurowski P., *Twistor space for rolling bodies*, Comm. Math. Phys., 326(2), 393-414

⁴2022, Bor G., Makhmali O. and Nurowski P., *Para-Kähler-Einstein 4-manifolds* and non-integrable twistor distributions, Geometriae Dedicata, ▶21@ 9 ← ₹ ▶ ← ₹ ▶

- Integrable systems they admit ASD conformal structures¹
- Two solids rolling on each other without slipping or twisting^{2,3}
- A relation between para-Kähler Einstein spaces and non-integrable twistor distributions⁴

¹2010, Dunajski M., Solitons, Instantons and Twistors, Oxford University Press ²1993, Bryant R., Hsu L., Rigidity of integral curves of rank two distributions, Invent. Math. 114, 435-461

³2014, An D., Nurowski P., *Twistor space for rolling bodies*, Comm. Math. Phys., 326(2), 393-414

⁴2022, Bor G., Makhmali O. and Nurowski P., *Para-Kähler-Einstein 4-manifolds* and non-integrable twistor distributions, Geometriae Dedicata. ▶2169 9 ← ★ ▶ ★ ★ ▶

- Integrable systems they admit ASD conformal structures¹
- Two solids rolling on each other without slipping or twisting^{2,3}
- A relation between para-Kähler Einstein spaces and non-integrable twistor distributions⁴

¹2010, Dunajski M., Solitons, Instantons and Twistors, Oxford University Press

²1993, Bryant R., Hsu L., *Rigidity of integral curves of rank two distributions*, Invent. Math. 114, 435-461

³2014, An D., Nurowski P., *Twistor space for rolling bodies*, Comm. Math. Phys., 326(2), 393-414

⁴2022, Bor G., Makhmali O. and Nurowski P., *Para-Kähler-Einstein 4-manifolds* and non-integrable twistor distributions, Geometriae Dedicata. ▶2169 9 ← ★ ▶ ★ ★ ▶

- Integrable systems they admit ASD conformal structures¹
- Two solids rolling on each other without slipping or twisting^{2,3}
- A relation between para-Kähler Einstein spaces and non-integrable twistor distributions⁴

¹2010, Dunajski M., *Solitons, Instantons and Twistors*, Oxford University Press ²1993, Bryant R., Hsu L., *Rigidity of integral curves of rank two distributions*, Invent. Math. 114, 435-461

³2014, An D., Nurowski P., *Twistor space for rolling bodies*, Comm. Math. Phys., 326(2), 393-414

⁴2022, Bor G., Makhmali O. and Nurowski P., *Para-Kähler-Einstein 4-manifolds* and non-integrable twistor distributions, Geometriae Dedicata. ▶2169 9 ← ★ ▶ ★ ★ ▶

- Integrable systems they admit ASD conformal structures¹
- Two solids rolling on each other without slipping or twisting^{2,3}
- A relation between para-Kähler Einstein spaces and non-integrable twistor distributions⁴

¹2010, Dunajski M., *Solitons, Instantons and Twistors*, Oxford University Press ²1993, Bryant R., Hsu L., *Rigidity of integral curves of rank two distributions*, Invent. Math. 114, 435-461

³2014, An D., Nurowski P., *Twistor space for rolling bodies*, Comm. Math. Phys., 326(2), 393-414

⁴2022, Bor G., Makhmali O. and Nurowski P., *Para-Kähler-Einstein 4-manifolds* and non-integrable twistor distributions, Geometriae Dedicata, 216, 9

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces

Main goal: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding \mathcal{HH} -spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding HH-spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

^{62022,} A. C., Hyperheavenly spaces and their application in Walker and ara-Kähler geometries: Part II, to appear in arXiv

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I, Journal of Geometry and Physics 179, 104591

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces **Main goal**: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding \mathcal{HH} -spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding $\mathcal{H}\mathcal{H}$ -spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

^{62022,} A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part II, to appear in arXiv

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I. Journal of Geometry and Physics 179, 10450.

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces **Main goal**: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding HH-spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding HH-spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I, Journal of Geometry and Physics 179, 104591

^{62022,} A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part II, to appear in arXiv

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces **Main goal**: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding HH-spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding $\mathcal{H}\mathcal{H}$ -spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I, Journal of Geometry and Physics 179, 104591

⁶2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part II, to appear in arXiv

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces **Main goal**: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding HH-spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding $\mathcal{H}\mathcal{H}$ -spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I, Journal of Geometry and Physics 179, 104591

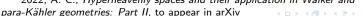
⁶2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part II, to appear in arXiv

Research programme: Weak \mathcal{HH} -spaces \longrightarrow para-Kähler spaces **Main goal**: to find the most general metric of algebraically degenerate para-Kähler Einstein spaces

- Weak nonexpanding HH-spaces⁵ (The 7th Conference of the Polish Society on Relativity, Łódź, 2021)
- Weak expanding $\mathcal{H}\mathcal{H}$ -spaces⁶

- All considerations are local
- All metrics are complex (coordinates are complex, functions are holomorphic) but they have neutral slices

⁵2022, A. C., Hyperheavenly spaces and their application in Walker and para-Kähler geometries: Part I, Journal of Geometry and Physics 179, 104591 ⁶2022, A. C., Hyperheavenly spaces and their application in Walker and



- Part 1: Criteria of classification (Petrov-Penrose classification, properties of congruences of null strings, properties of intersections of congruences of null strings)
- Part 2: From weak expanding HH-spaces to algebraically degenerate para-Kähler spaces
- Part 3: General metrics of all algebraically degenerate para-Kähler Einstein spaces

- Part 1: Criteria of classification (Petrov-Penrose classification, properties of congruences of null strings, properties of intersections of congruences of null strings)
- Part 2: From weak expanding HH-spaces to algebraically degenerate para-Kähler spaces
- Part 3: General metrics of all algebraically degenerate para-Kähler Einstein spaces

- Part 1: Criteria of classification (Petrov-Penrose classification, properties of congruences of null strings, properties of intersections of congruences of null strings)
- Part 2: From weak expanding HH-spaces to algebraically degenerate para-Kähler spaces
- Part 3: General metrics of all algebraically degenerate para-Kähler Einstein spaces

- Part 1: Criteria of classification (Petrov-Penrose classification, properties of congruences of null strings, properties of intersections of congruences of null strings)
- Part 2: From weak expanding HH-spaces to algebraically degenerate para-Kähler spaces
- Part 3: General metrics of all algebraically degenerate para-Kähler Einstein spaces

Criterion 1: Petrov-Penrose classification Criterion 2: Congruence of null strings Criterion 3: Intersection of congruences of SD and ASD null strings Symbol Examples

Part 1: Criteria of classification

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Petrov-Penrose classification

Penrose theorem says $C_{ABCD} = a_{(A}b_Bc_Cd_{D)}$, where a_A , b_A , c_A and d_A are undotted Penrose spinors.

Complex case		Real neutral case	
Туре	$C_{ABCD} =$	Туре	$C_{ABCD} =$
[I]		$[I_r]$	
		$[I_{rc}]$	
		$[I_c]$	
[II]		$[II_r]$	
		$[II_{rc}]$	
[D]		$[D_r]$	
		$[D_c]$	
[III]		$[III_r]$	
[N]		$[N_r]$	
[O]		$[O_r]$	

Spinors a_A , b_A , c_A and d_A are complex, spinors m_A , n_A , n_A , n_A and n_A are real; bar stands for the complex conjugation.

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Petrov-Penrose classification

Penrose theorem says $C_{ABCD} = a_{(A}b_Bc_Cd_{D)}$, where a_A , b_A , c_A and d_A are undotted Penrose spinors.

Complex case		Real neutral case	
Type	$C_{ABCD} =$	Type	$C_{ABCD} =$
[I]	$a_{(A}b_Bc_Cd_{D)}$	$[I_r]$	$m_{(A}n_Br_Cs_{D)}$
		$[I_{rc}]$	$m_{(A}n_Ba_C\bar{a}_{D)}$
		$[I_c]$	$a_{(A}\bar{a}_Bb_Cb_{D)}$
[II]	$a_{(A}a_{B}b_{C}c_{D)}$	$[\mathrm{II}_r]$	$m_{(A}m_Bn_Cr_{D)}$
		$[II_{rc}]$	$m_{(A}m_Ba_C\bar{a}_{D)}$
[D]	$a_{(A}a_Bb_Cb_{D)}$	$[D_r]$	$m_{(A}m_Bn_Cn_{D)}$
		$[D_c]$	$a_{(A}a_{B}\bar{a}_{C}\bar{a}_{D)}$
[III]	$a_{(A}a_{B}a_{C}b_{D)}$	$[III_r]$	$m_{(A}m_{B}m_{C}n_{D)}$
[N]	$a_A a_B a_C a_D$	$[N_r]$	$m_A m_B m_C m_D$
[O]	_	$[O_r]$	_

Spinors a_A , b_A , c_A and d_A are complex, spinors m_A , n_A , r_A and s_A are real; bar stands for the complex conjugation.

Criterion 2: Congruence of null strings Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Congruence (foliation) of the null strings

Definition

A congruence (foliation) of null strings is a family of totally null and totally geodesics 2-dimensional holomorphic surfaces, such that for every point $p \in \mathcal{M}$ there exists only one surface of this family such that p belongs to this surface.

If a congruence is self-dual (SD) then null strings are integral manifolds of a 2-dimensional SD distribution $\mathcal{D}=\{m_Aa_{\dot{B}},m_Ab_{\dot{B}}\},~a_{\dot{A}}b^{\dot{A}}\neq 0.~\mathcal{D}$ is integrable in the Frobenius sense, if

$$m^B \nabla_{A\dot{M}} m_B = m_A M_{\dot{M}}, \quad A, B = 1, 2, \ \dot{M} = \dot{1}, \dot{2}$$

- $M_{\dot{M}} \neq 0$ expanding congruence C^e
- $M_{\dot{M}}=0$ nonexpanding congruence \mathcal{C}^n

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Congruence (foliation) of the null strings

Definition

A congruence (foliation) of null strings is a family of totally null and totally geodesics 2-dimensional holomorphic surfaces, such that for every point $p \in \mathcal{M}$ there exists only one surface of this family such that p belongs to this surface.

If a congruence is self-dual (SD) then null strings are integral manifolds of a 2-dimensional SD distribution $\mathcal{D}=\{m_Aa_{\dot{B}},m_Ab_{\dot{B}}\},\,a_{\dot{A}}b^{\dot{A}}\neq0.\,\mathcal{D}$ is integrable in the Frobenius sense, if

$$m^B \nabla_{A\dot{M}} m_B = m_A M_{\dot{M}}, \quad A, B = 1, 2, \ \dot{M} = \dot{1}, \dot{2}$$

- $M_{\dot{M}} \neq 0$ expanding congruence C^e
- $M_{\dot{M}}=0$ nonexpanding congruence \mathcal{C}^n

Criterion 2: Intersection of congruences of SD and ASD null strings Symbol

Examples

Congruence (foliation) of the null strings

Definition

A congruence (foliation) of null strings is a family of totally null and totally geodesics 2-dimensional holomorphic surfaces, such that for every point $p \in \mathcal{M}$ there exists only one surface of this family such that p belongs to this surface.

If a congruence is self-dual (SD) then null strings are integral manifolds of a 2-dimensional SD distribution $\mathcal{D}=\{m_Aa_{\dot{B}},m_Ab_{\dot{B}}\}$, $a_{\dot{A}}b^{\dot{A}}\neq 0$. \mathcal{D} is integrable in the Frobenius sense, if

$$m^B \nabla_{A\dot{M}} m_B = m_A M_{\dot{M}}, \quad A, B = 1, 2, \ \dot{M} = \dot{1}, \dot{2}$$

- $M_{\dot{M}} \neq 0$ expanding congruence C^e
- $M_{\dot{M}} = 0$ nonexpanding congruence \mathcal{C}^n

Criterion 1: Petrov-Penrose classification
Criterion 2: Congruence of null strings
Criterion 3: Intersection of congruences of SD and ASD null strings
Symbol

Congruence (foliation) of the null strings

Definition

A congruence (foliation) of null strings is a family of totally null and totally geodesics 2-dimensional holomorphic surfaces, such that for every point $p \in \mathcal{M}$ there exists only one surface of this family such that p belongs to this surface.

Examples

If a congruence is self-dual (SD) then null strings are integral manifolds of a 2-dimensional SD distribution $\mathcal{D}=\{m_Aa_{\dot{B}},m_Ab_{\dot{B}}\},\,a_{\dot{A}}b^{\dot{A}}\neq 0.\,\,\mathcal{D}$ is integrable in the Frobenius sense, if

$$m^B \nabla_{A\dot{M}} m_B = m_A M_{\dot{M}}, \quad A, B = 1, 2, \ \dot{M} = \dot{1}, \dot{2}$$

- $M_{\dot{M}} \neq 0$ expanding congruence \mathcal{C}^e
- $M_{\dot{M}}=0$ nonexpanding congruence \mathcal{C}^n

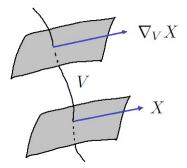
Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Congruence of the null strings

Nonexpanding congruence = distribution \mathcal{D} is parallely propagated:

 $\nabla_V X \in \mathcal{D}$ for any vector field V and any vector field $X \in \mathcal{D}$



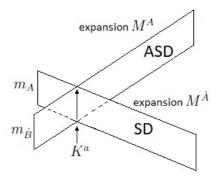
Criterion 3: Intersection of congruences of SD and ASD null strings
Symbol

Examples

Intersection of SD and ASD congruences of the null strings

Consider two congruences of null strings

- \bullet a SD congruence generated by a spinor m_A with an expansion given by a spinor $M_{\dot{A}}$
- \bullet an ASD congruence generated by a spinor $m_{\dot{A}}$ with an expansion given by a spinor M_A



Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Intersection of SD and ASD congruences of the null strings

Intersection of these congruences constitutes a congruence of null geodesics. It is given by the vector field $K^a \sim m^A m^{\dot{B}}$. Define complex expansion θ and complex twist ϱ by the formulas

$$\theta := \frac{1}{2} \nabla^a K_a \quad \sim \quad m_A M^A + m_{\dot{A}} M^{\dot{A}}$$

$$\varrho^2 := \frac{1}{2} \nabla_{[a} K_{b]} \nabla^a K^b \quad \sim \quad m_A M^A - m_{\dot{A}} M^{\dot{A}}$$

- [++]: $\theta \neq 0, \rho \neq 0$; expanding, twisting
- [+-]: $\theta \neq 0, \varrho = 0$; expanding, nontwisting
- [-+]: $\theta = 0, \varrho \neq 0$; nonexpanding, twisting
- [--]: $\theta = 0, \varrho = 0$; nonexpanding, nontwisting

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Intersection of SD and ASD congruences of the null strings

Intersection of these congruences constitutes a congruence of null geodesics. It is given by the vector field $K^a \sim m^A m^{\dot{B}}$. Define complex expansion θ and complex twist ϱ by the formulas

$$\begin{split} \theta &:= \frac{1}{2} \nabla^a K_a \quad \sim \quad m_A M^A + m_{\dot{A}} M^{\dot{A}} \\ \varrho^2 &:= \frac{1}{2} \nabla_{[a} K_{b]} \, \nabla^a K^b \quad \sim \quad m_A M^A - m_{\dot{A}} M^{\dot{A}} \end{split}$$

- [++]: $\theta \neq 0, \varrho \neq 0$; expanding, twisting
- [+-]: $\theta \neq 0, \varrho = 0$; expanding, nontwisting
- [-+]: $\theta = 0, \varrho \neq 0$; nonexpanding, twisting
- [--]: $\theta = 0, \varrho = 0$; nonexpanding, nontwisting

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Symbol

In complex and real neutral geometries the following symbol is used

$$[\mathrm{SD}_\mathrm{Weyl}] \otimes [\mathrm{ASD}_\mathrm{Weyl}]$$

where

$$\begin{array}{lcl} \mathrm{SD}_{\mathrm{Weyl}}, \mathrm{ASD}_{\mathrm{Weyl}} & = & \{\mathrm{I}, \mathrm{II}, \mathrm{D}, \mathrm{III}, \mathrm{N}, \mathrm{O}\} \text{ in complex spaces} \\ \mathrm{SD}_{\mathrm{Weyl}}, \mathrm{ASD}_{\mathrm{Weyl}} & = & \{\mathrm{I}_r, \mathrm{I}_{rc}, \mathrm{I}_c, \mathrm{II}_r, \mathrm{II}_{rc}, \mathrm{D}_r, \mathrm{D}_c, \mathrm{III}_r, \mathrm{N}_r, \mathrm{O}_r\} \\ & & \mathrm{in neutral spaces} \end{array}$$

for example

$$[D] \otimes [N]$$

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Symbol

An extension of this symbol reads

$$\{[\mathrm{SD}_{\mathrm{Weyl}}]^{i_1 i_2 ...} \otimes [\mathrm{ASD}_{\mathrm{Weyl}}]^{j_1 j_2 ...}, [k_{i_1 j_1}, k_{i_1 j_2}, ... k_{i_2 j_1}, k_{i_2 j_2}, ...]\}$$

where

$$i_1, i_2, ..., j_1, j_2, ... = \{n, e\}$$

n stands for nonexpanding congruence, \emph{e} stands for expanding congruence and

$$k_{i_1j_1}, k_{i_1j_2}, ...k_{i_2j_1}, k_{i_2j_2}... = \{++, +-, -+, --\}$$

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Symbol

An extension of this symbol reads

$$\{[\mathrm{SD}_{\mathrm{Weyl}}]^{i_1 i_2 ...} \otimes [\mathrm{ASD}_{\mathrm{Weyl}}]^{j_1 j_2 ...}, [k_{i_1 j_1}, k_{i_1 j_2}, ... k_{i_2 j_1}, k_{i_2 j_2}, ...]\}$$

where

$$i_1, i_2, ..., j_1, j_2, ... = \{n, e\}$$

n stands for nonexpanding congruence, e stands for expanding congruence and

$$k_{i_1j_1}, k_{i_1j_2}, ... k_{i_2j_1}, k_{i_2j_2} ... = \{++, +-, -+, --\}$$

Criterion 2: Congruence of null strings

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Symbol

An extension of this symbol reads

$$\{[\mathrm{SD}_{\mathrm{Weyl}}]^{i_1 i_2 ...} \otimes [\mathrm{ASD}_{\mathrm{Weyl}}]^{j_1 j_2 ...}, [k_{i_1 j_1}, k_{i_1 j_2}, ... k_{i_2 j_1}, k_{i_2 j_2}, ...]\}$$

where

$$i_1, i_2, ..., j_1, j_2, ... = \{n, e\}$$

n stands for nonexpanding congruence, e stands for expanding congruence and

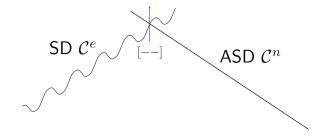
$$k_{i_1j_1}, k_{i_1j_2}, ...k_{i_2j_1}, k_{i_2j_2}... = \{++, +-, -+, --\}$$

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Example 1

$$\{[\,\cdot\,]^e\otimes[\,\cdot\,]^n,[--]\}$$



Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

One SD, one ASD congruence

If there is one SD and one ASD congruence of null strings, there are 7 subtypes:

Type / Subtype	Conditions
Type $[\cdot]^n\otimes[\cdot]^n$	$M^{\dot{A}} = M^A = 0$
[]	-
Type $[\cdot]^n\otimes[\cdot]^e$	$M^{\dot{A}}=0,\ M^{A}\neq0$
[]	$m_A M^A = 0$
[++]	$m_A M^A \neq 0$
Type $[\cdot]^e\otimes[\cdot]^e$	$M^{\dot{A}} \neq 0, M^A \neq 0$
[]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} = 0$
[+-]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} \neq 0$
[-+]	$m_A M^A = -m_{\dot{A}} M^{\dot{A}} \neq 0$
[++]	$m_A M^A \pm m_{\dot{A}} M^{\dot{A}} \neq 0$

Criterion 1: Petrov-Penrose classification

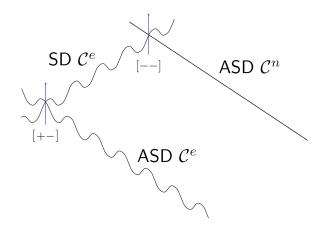
Criterion 2: Congruence of null strings

Criterion 3: Intersection of congruences of SD and ASD null strings

Symbol Examples

Example 2

$$\{[\,\cdot\,]^e\otimes[\,\cdot\,]^{ne},[--,+-]\}$$



Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

One SD, two ASD congruences

If there is one SD and two ASD congruence of null strings, there are 24 subtypes:

Type / Subtype	Conditions
Type $[\cdot]^n\otimes[\cdot]^{nn}$	$M^{\dot{A}} = N^A = M^A = 0$
[,]	-
Type $[\cdot]^n\otimes[\cdot]^{ne}$	$M^{\dot{A}} = M^{A} = 0, N^{A} \neq 0$
[,]	$m_A N^A = 0$
[,++]	$m_A N^A \neq 0$
Type $[\cdot]^n\otimes[\cdot]^{ee}$	$M^{\dot{A}} = 0, M^{A} \neq 0, N^{A} \neq 0$
[,]	$m_A M^A = m_A N^A = 0$
[,++]	$m_A M^A = 0, m_A N^A \neq 0$
[++,++]	$m_A M^A \neq 0, m_A N^A \neq 0$
Type $[\cdot]^e\otimes[\cdot]^{nn}$	$M^{\dot{A}} \neq 0, M^{A} = N^{A} = 0$
[,++]	$m_{\dot{A}}M^{\dot{A}}=0$, $n_{\dot{A}}M^{\dot{A}}\neq 0$
[++,++]	$m_{\dot{A}}M^{\dot{A}} \neq 0$, $n_{\dot{A}}M^{\dot{A}} \neq 0$

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

One SD, two ASD congruences

Type / Subtype	Conditions
Type $[\cdot]^e\otimes[\cdot]^{ne}$	$M^{A} \neq 0, M^{A} = 0, N^{A} \neq 0$
[,+-]	$m_{\dot{A}}M^{\dot{A}}=0$, $m_{A}N^{A}=n_{\dot{A}}M^{\dot{A}}\neq0$
[,-+]	$m_{\dot{A}}M^{\dot{A}} = 0, m_{A}N^{A} = -n_{\dot{A}}M^{\dot{A}} \neq 0$
[,++]	$m_{\dot{A}}M^{\dot{A}}=0$, $m_{A}N^{A}\pm n_{\dot{A}}M^{\dot{A}} eq 0$
[++,]	$m_{\dot{A}}M^{\dot{A}} eq 0$, $m_AN^A = n_{\dot{A}}M^{\dot{A}} = 0$
[++,+-]	$m_{\dot{A}}M^{\dot{A}} \neq 0, m_{A}N^{A} = n_{\dot{A}}M^{\dot{A}} \neq 0$
[++, -+]	$m_{\dot{A}}M^{\dot{A}} \neq 0, m_{A}N^{A} = -n_{\dot{A}}M^{\dot{A}} \neq 0$
[++,++]	$m_{\dot{A}}M^{\dot{A}} \neq 0, m_{A}N^{A} \pm n_{\dot{A}}M^{\dot{A}} \neq 0$
Type $[\cdot]^e\otimes[\cdot]^{ee}$	$M^{\dot{A}} \neq 0, M^{A} \neq 0, N^{A} \neq 0$
[,+-]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} = 0$, $m_A N^A = n_{\dot{A}} M^{\dot{A}} \neq 0$
[, -+]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} = 0, m_A N^A = -n_{\dot{A}} M^{\dot{A}} \neq 0$
[,++]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} = 0, m_A N^A \pm n_{\dot{A}} M^{\dot{A}} \neq 0$
[+-,+-]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} \neq 0$, $m_A N^A = n_{\dot{A}} M^{\dot{A}} \neq 0$
[+-,-+]	$m_A M^A = m_{\dot{A}} M^{\dot{A}} \neq 0, m_A N^A = -n_{\dot{A}} M^{\dot{A}} \neq 0$
[-+, -+]	$m_A M^A = -m_{\dot{A}} M^A \neq 0, m_A N^A = -n_{\dot{A}} M^A \neq 0$
[++,+-]	$m_A M^A \pm m_{\dot{A}} M^{\dot{A}} \neq 0, m_A N^A = n_{\dot{A}} M^{\dot{A}} \neq 0$
[++, -+]	$m_A M^A \pm m_{\dot{A}} M^{\dot{A}} \neq 0, m_A N^A = -n_{\dot{A}} M^{\dot{A}} \neq 0$
[++,++]	$m_A M^A \pm m_{\dot{A}} M^{\dot{A}} \neq 0, m_A N^A \pm n_{\dot{A}} M^{\dot{A}} \neq 0$

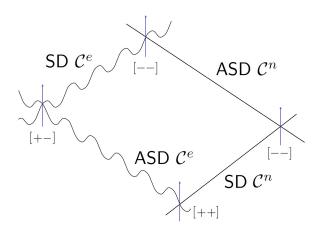
Criterion 1: Petrov-Penrose classification Criterion 2: Congruence of null strings

Criterion 3: Intersection of congruences of SD and ASD null strings Symbol

Examples

Example 3

$$\{[\,\cdot\,]^{en}\otimes[\,\cdot\,]^{ne},[--,+-,--,++]\}$$



Criterion 1: Petrov-Penrose classification
Criterion 2: Congruence of null strings
Criterion 3: Intersection of congruences of SD and ASD null strings
Symbol

Two SD, two ASD congruences

If there are two SD and two ASD congruences of null strings, there are 89 subtypes.

Examples

Part 2: From weak \mathcal{HH} -spaces to algebraically degenerate para-Kähler spaces

Para-Kähler spaces (types [any] \otimes [D]ⁿⁿ)

Definition

Para-Kähler space (pK space) is a pair (\mathcal{M}, ds^2) where \mathcal{M} is a 4-dimensional real differential manifold and ds^2 is a smooth metric of the signature (++--) which satisfies the following condition:

 there exist two different (complementary) nonexpanding congruences of null strings

The metric of para-Kähler spaces

The metric of any para-Kähler space can be brought to the form

$$\frac{1}{2}ds^2 = M_{qx}dqdx + M_{qy}dqdy + M_{px}dpdx + M_{py}dpdy$$

where M = M(q, p, x, y).

For para-Kähler Einstein spaces function M satisfies

$$M_{qx}M_{py} - M_{qy}M_{px} = e^{-\Lambda M}$$

Weak \mathcal{HH} -spaces (types $[\deg]^e \otimes [\operatorname{any}]$ or $[\deg]^n \otimes [\operatorname{any}]$)

Definition

Weak hyperheavenly space (weak HH-space) is a pair (\mathcal{M}, ds^2) where \mathcal{M} is a 4-dimensional complex analytic differential manifold and ds^2 is a holomorphic metric which satisfies the following conditions:

ullet there exists a congruence of SD null strings generated by a spinor m_A

$$m^A m^B \nabla_{A\dot{M}} m_B = 0$$

• the self-dual Weyl spinor C_{ABCD} is algebraically degenerate and m_A is a multiple Penrose spinor i.e.

$$C_{ABCD} \, m^A m^B m^C = 0$$

The metric of weak \mathcal{HH} -spaces

The metric of a weak \mathcal{HH} -space can be brought to the form

$$\frac{1}{2}ds^2 = \phi^{-2} \left(dq dy - dp dx + \mathcal{A} dp^2 - 2\mathcal{Q} dp dq + \mathcal{B} dq^2 \right)$$

where (q,p,x,y) are local coordinates; $\mathcal{A}=\mathcal{A}(q,p,x,y)$, $\mathcal{Q}=\mathcal{Q}(q,p,x,y)$ and $\mathcal{B}=\mathcal{B}(q,p,x,y)$ are arbitrary holomorphic functions and

for weak expanding \mathcal{HH} -space $\phi = \phi(q, p, x, y), \ |\phi_x| + |\phi_y| \neq 0$ for weak nonexpanding \mathcal{HH} -space $\phi = 1$

 $[\deg]^e \otimes [\operatorname{any}]$ (weak expanding \mathcal{HH} -space)

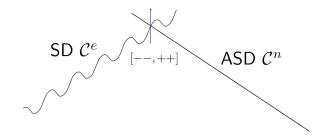
```
\operatorname{\mathsf{SD}} \mathcal{C}^e
```

$$[\deg]^e \otimes [\operatorname{any}] \longrightarrow [\deg]^e \otimes [\operatorname{any}]^e$$

$$\mathsf{SD} \ \mathcal{C}^e$$

$$[--,-+,+]$$
 $\mathsf{ASD} \ \mathcal{C}^e$

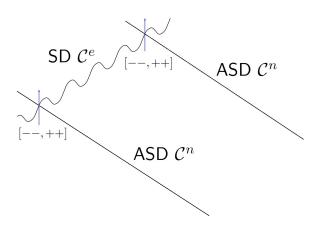
$$[\deg]^e \otimes [\operatorname{any}]^e \longrightarrow [\deg]^e \otimes [\deg]^n$$



$$[\deg]^e \otimes [\deg]^n \longrightarrow [\deg]^e \otimes [\deg]^{ne}$$

$$\operatorname{SD} \mathcal{C}^e$$
 $[--,++]$
 $\operatorname{ASD} \mathcal{C}^n$
 $[--,-+,+-]$
 $\operatorname{ASD} \mathcal{C}^e$

$$[\deg]^e \otimes [\deg]^{ne} \longrightarrow [\deg]^e \otimes [\mathrm{D}]^{nn}$$
 (para-Kähler spaces)



Nonexpanding case:

Expanding case:

$$[\deg]^n \otimes [\operatorname{any}] \qquad [\deg]^e \otimes [\operatorname{any}]$$

$$\bigvee \longleftarrow \operatorname{let} \ \mathcal{C}^e_{m^A} \ \operatorname{exists} \longrightarrow \bigvee$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [--] \} \qquad \{ [\deg]^e \otimes [\operatorname{any}]^e, [--] \}$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [+-] \}$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [-+] \}$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [-+] \}$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [++] \}$$

$$\{ [\deg]^e \otimes [\operatorname{any}]^e, [-+] \}$$

$$\{ [\deg]^e \otimes [\operatorname{deg}]^n, [--] \}$$

$$\{ [\deg]^e \otimes [\operatorname{deg}]^n, [--] \}$$

$$\{ [\deg]^e \otimes [\operatorname{deg}]^n, [-+] \}$$

Nonexpanding case:

$$\{[\deg]^n \otimes [\deg]^{ne}, [--, --]\} \qquad \{[\deg]^e \\ \{[\deg]^n \otimes [\deg]^{ne}, [--, ++]\} \qquad \{[\deg]^e \\ \{[\deg]^e \\ \{[\deg]^e \\ \{[\deg]^e \\ \{[\deg]^e \\ \{[\deg]^e \} \\ \{[\deg]^e \} \} \} \} \}$$

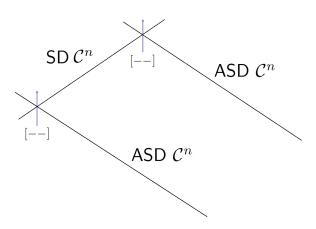
Expanding case:

$$\begin{split} & \{[\deg]^e \otimes [\deg]^{ne}, [--,+-]\} \\ & \{[\deg]^e \otimes [\deg]^{ne}, [--,-+]\} \\ & \{[\deg]^e \otimes [\deg]^{ne}, [--,++]\} \\ & \{[\deg]^e \otimes [\deg]^{ne}, [++,--]\} \\ & \{[\deg]^e \otimes [\deg]^{ne}, [++,+-]\} \\ & \{[\deg]^e \otimes [\deg]^{ne}, [++,++]\} \\ \hline & \qquad \qquad \qquad \qquad \downarrow \\ & \{[\deg]^e \otimes [\mathsf{D}]^{nn}, [--,++]\} \\ & \{[\deg]^e \otimes [\mathsf{D}]^{nn}, [++,++]\} \end{split}$$

Class 1 Class 2 Class 3 Class 4

Part 3: Para-Kähler Einstein spaces

$$\{[\deg]^n\otimes[\mathrm{D}]^{nn},[--,--]\};\,\mathsf{SD}\;\mathsf{Weyl}=\{\mathrm{II},\mathrm{D}\}$$



The metric of an Einstein space of the type $[II]^n\otimes [D]^{nn}$ or $[D]^{nn}\otimes [D]^{nn}$ can be brought to the form

$$\frac{1}{2}ds^{2} = dqdy - dpdx + \left(\frac{\Lambda}{2}x^{2} + \Omega\right)dp^{2} + \left(\frac{\Lambda}{2}y^{2} + \Sigma\right)dq^{2}$$

where (q,p,x,y) are local coordinates; $\Omega=\Omega(q,p)$ and $\Sigma=\Sigma(q,p)$ are functions such that

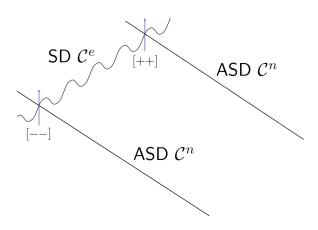
for the type
$$[II]^n \otimes [D]^{nn} : |\Sigma_p| + |\Omega_q| \neq 0;$$

for the type $[D]^{nn} \otimes [D]^{nn} : \Sigma = \Omega = 0.$

Class 1 Class 2 Class 3 Class 4

Para-Kähler Einstein spaces: Class 2

$$\{[\deg]^e\otimes[\mathrm{D}]^{nn},[++,--]\};\,\mathsf{SD}\;\mathsf{Weyl}=\{\mathrm{II},\mathrm{D},\mathrm{III},\mathrm{N}\}$$



The metric of an Einstein space of the type $\{[\deg]^e\otimes [\mathrm{D}]^{nn},[++,--]\}$ can be brought to the form

$$\begin{split} \frac{1}{2}ds^2 &= x^{-2}\Big\{dqdy - dpdx + \left(Ax^3 + \frac{\Lambda}{3}\right)dp^2 \\ &-2\left(Ayx^2 + \frac{\Lambda}{3}\frac{y}{x} + \frac{M_p}{2\Lambda}x^2\right)dqdp \\ &+ \left(Ay^2x + \frac{\Lambda}{3}\frac{y^2}{x^2} + \frac{M_p}{\Lambda}xy + Nx - My\right)dq^2\Big\} \end{split}$$

where $\Lambda \neq 0$ is a cosmological constant, A=A(q,p), M=M(q,p) and N=N(q,p) are arbitrary holomorphic (real smooth) functions.

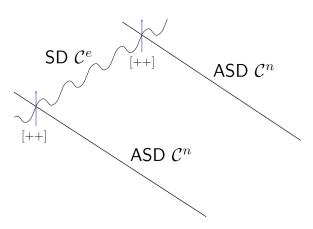
$$\{[\Pi]^{e} \otimes [D]^{nn}, [++,--]\} : A \neq 0, 2C^{(2)}C^{(2)} - 3C^{(3)}C^{(1)} \neq 0$$

$$\{[\Pi\Pi]^{e} \otimes [D]^{nn}, [++,--]\} : A = 0, M_{pp} \neq 0$$

$$\{[N]^{e} \otimes [D]^{nn}, [++,--]\} : A = 0, M = M_{0} = \{-1,0,1\},$$

$$3N_{pp} - 2M_{0}^{2}p \neq 0$$

$$\{[\deg]^e\otimes[\mathrm{D}]^{nn},[++,++]\};\,\mathsf{SD}\;\mathsf{Weyl}=\{\mathrm{II},\mathrm{D},\mathrm{III},\mathrm{N}\}$$



The metric of an Einstein space of the type $\{[\deg]^e\otimes [\mathrm{D}]^{nn},[++,++]\}$ can be brought to the form

$$\begin{split} \frac{1}{2}ds^2 &= x^{-2}\Big\{dqdy - dpdx + \left(Ax^3 - Cx^2 - Bx(1-2y) + \frac{\Lambda}{3}(1-3y+3y^2)\right)dp^2 \\ &- 2\left(Ax^2y - By(1-y) - Mx^2 + \frac{\Lambda}{3}\frac{y(1-y)(1-2y)}{x}\right)dqdp \\ &+ \left(Axy^2 - Cy(1-y) + Mx(1-2y) + \frac{\Lambda}{3}\frac{y^2(1-y)^2}{x^2} + \frac{2B_q + C_p}{2\Lambda}x\right)dq^2\Big\} \end{split}$$

where $\Lambda \neq 0$ is a cosmological constant, A = A(q,p), B = B(q,p), C = C(q,p) and M = M(q,p) are arbitrary holomorphic (real smooth) functions.

$$\{[\Pi]^e \otimes [D]^{nn}, [++,++]\} : A \neq 0, 2C^{(2)}C^{(2)} - 3C^{(3)}C^{(1)} \neq 0$$

$$\{[\Pi]^e \otimes [D]^{nn}, [++,++]\} : A = 0, 2M_p + C_q + \frac{B}{\Lambda}(2B_q + C_p) \neq 0$$

$$\{[N]^e \otimes [D]^{nn}, [++,++]\} : A = 0, 2M_p + C_q + \frac{B}{\Lambda}(2B_q + C_p) = 0$$

Class 1 Class 2 Class 3 Class 4

Para-Kähler Einstein spaces: Class 3

The metric of an Einstein space of the type $\{[N]^e \otimes [D]^{nn}, [++,++]\}$ can be brought to the form

$$\begin{split} \frac{1}{2}ds^2 &= x^{-2} \Big\{ dq dy - (P_t dt + P_q dq) dx \\ &+ \left(-\left(t - \frac{B^2}{\Lambda}\right) x^2 - Bx(1 - 2y) + \frac{\Lambda}{3}(1 - 3y + 3y^2) \right) (P_t dt + P_q dq)^2 \\ &- 2\left(-By(1 - y) - \left(\frac{N}{2} + \frac{B^3}{3\Lambda^2}\right) x^2 + \frac{\Lambda}{3} \frac{y(1 - y)(1 - 2y)}{x} \right) dq (P_t dt + P_q dq) \\ &+ \left[-\left(t - \frac{B^2}{\Lambda}\right) y(1 - y) + \left(\frac{N}{2} + \frac{B^3}{3\Lambda^2}\right) x(1 - 2y) + \frac{\Lambda}{3} \frac{y^2(1 - y)^2}{x^2} \right. \\ &+ \frac{1}{2\Lambda} \left(2B_q + \frac{1}{P_t} - \frac{2B_t}{P_t} (2P_q - N_t) \right) x \Big] dq^2 \Big\} \end{split}$$

where $\Lambda \neq 0$ is a cosmological constant, $B:=\Lambda(P_q-N_t)$; N=N(q,t) and P=P(q,t) are arbitrary holomorphic (real smooth) functions such that $P_t \neq 0$ and

$$\begin{split} &-\frac{1}{2\Lambda}\frac{1}{P_t}\frac{\partial}{\partial t}\left(\frac{1}{P_t}\frac{\partial}{\partial t}\left(2B_q-2\frac{P_q}{P_t}B_t+\frac{1}{P_t}-\frac{2}{\Lambda}\frac{1}{P_t}BB_t\right)\right)-\frac{1}{2}\frac{1}{P_t}\partial_t(NB)\\ &+\frac{\Lambda}{6}\left(N_q-\frac{P_q}{P_t}N_t\right)-\frac{4t}{3\Lambda}\frac{1}{P_t}BB_t+\frac{2t}{3}\frac{1}{P_t}+\frac{t}{3}\left(B_q-\frac{P_q}{P_t}B_t\right)-\frac{2}{3\Lambda}\frac{1}{P_t}B^2\neq 0 \end{split}$$

Class 1 Class 2 Class 3

Class 4

Para-Kähler Einstein spaces: Class 4

Type $[I] \otimes [D]^{nn}$. No examples.

Para-Kähler Einstein spaces: Summary

Algebraically special pKE-spaces

Class 1: {
$$[\deg]^n \otimes [D]^{nn}, [--, --]$$
}
Class 2: { $[\deg]^e \otimes [D]^{nn}, [++, --]$ }
Class 3: { $[\deg]^e \otimes [D]^{nn}, [++, ++]$ } all known in all the generality

Algebraically general pKE-spaces

Class 4: $[I] \otimes [D]^{nn}$ no examples are known

Para-Kähler Einstein spaces: Summary

Algebraically special pKE-spaces

Class 1:
$$\{[\deg]^n \otimes [D]^{nn}, [--, --]\}$$

Class 2: $\{[\deg]^e \otimes [D]^{nn}, [++, --]\}$
Class 3: $\{[\deg]^e \otimes [D]^{nn}, [++, ++]\}$

Algebraically general pKE-spaces

Class 4: $[I] \otimes [D]^{nn}$ no examples are known

Para-Kähler Einstein spaces: Summary

Algebraically special pKE-spaces

Class 1:
$$\{[\deg]^n \otimes [D]^{nn}, [--, --]\}$$

Class 2: $\{[\deg]^e \otimes [D]^{nn}, [++, --]\}$
Class 3: $\{[\deg]^e \otimes [D]^{nn}, [++, ++]\}$

Algebraically general pKE-spaces

Class 4: $[I] \otimes [D]^{nn}$ no examples are known