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Based on papers:

MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, Phys. Rev. D 101, 
063506 (2020)

M. Grasso, MK, J. Serbenta, Geometric optics in general relativity using bilocal operators, Phys. Rev. D 99, 064038 (2019)

MK, J. Serbenta, Testing the null energy condition with precise distant measurements, Phys. Rev. D 105, 084017 (2022)

Geometric optics in GR beyond the Sachs formalism, beyond a single emission and observation point

Motivation: drift effects in cosmology, i.e. secular variations of redshift and position of distant sources 

Beyond the standard lensing/weak lensing formalism - exact formulas

As a side product: theory of trigonometric parallax measurements and distance measurements in GR 

Potential new observable in astrometry with surprising properties
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D ≡ D(ℰ, 𝒪, γ0, u𝒪, uℰ)

Distance measure along a null geodesic

Angular diameter distance

flat spacetime

δθ =
δxℰ

D E O

𝛿𝜃
δxℰ

general spacetime

δθA = MA
B δxB

ℰ

Dang = det MA
B

−1/2
=

Aℰ

Ω𝒪

1/2

Dang ≡ Dang(ℰ, 𝒪, γ0, u𝒪)
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general spacetime

Dlum =
I

4πF
Dlum ≡ Dlum(ℰ, 𝒪, γ0, u𝒪, uℰ)

Luminosity distance

flat spacetime, no relative motion

F =
I

4πD2 E O

Related to the angular diameter distance via the Etherington’s reciprocity relation

Dlum = (1 + z)2 Dang [Etherington 1933, Penrose 1966, … Uzun 2019]
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Expressing the distance measures using curvature

MA
B = (l𝒪 μ uμ

𝒪) 𝒟−1A
B

Main tool: geodesic deviation equation around a null geodesic

··𝒟A
B − RA

llC 𝒟C
B = 0

·𝒟A
B(𝒪) = δA

B

𝒟A
B(λ𝒪) = 0

Angular diameter distance

Jacobi matrix

Dang = (l𝒪 μ uμ
𝒪)−1 det 𝒟A

B
1/2

lμ
𝒪
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Parallax effect - difference in apparent position of a light source 
between two nearby observers [Grasso, MK, Serbenta 2019]

E
O

𝛿𝜃

δx𝒪

O’

• The same 4-velocity uO  (in the sense of parallel transport)

• Direction comparison wrt parallel transported directions

• Timing of observations: comparing light emitted by the source at 
the same moment E

Flat spacetime: δθ = −
δx𝒪

D

General spacetime:

ΠAB = ΠBA

δθA = − ΠA
B δxB

𝒪

Dpar = det ΠA
B

−1/2
Dpar ≡ Dpar(ℰ, 𝒪, γ0, u𝒪)
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Expressing the distance measures using curvature

ΠA
B = (l𝒪 μ uμ

𝒪) 𝒟−1A
C (δC

B + mC
B)

MA
C

··mA
B − RA

llC mC
B = RA

llB

·mA
B(𝒪) = 0

mA
B(𝒪) = 0

Parallax distance

Dpar = (l𝒪 μ uμ
𝒪)−1 det 𝒟A

B
1/2

det (δA
B + mA

B)
−1/2

Dpar ≡ Dpar(ℰ, 𝒪, γ0, u𝒪)

curvature 
correction

lμ
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WXX
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Define a scalar quantity μ = 1 −
det ΠA

B

det MA
B

lμ
𝒪

Vanishes in a flat spacetime

μ = 1 − det (δA
B + mA

B) = 1 − det(WXX
A

B)

Frames-independent μ ≡ μ(ℰ, 𝒪, γ0)

Expressed via distance measures μ = 1 − σ
D2

ang

D2
par

±1, but usually 1
μ = 1 − (1 + z)−4 D2

lum

D2
par

Short distance approximation: μ =
8πG
c4 ∫

ℰ

𝒪
Tll(λ) (λℰ − λ) dλ + O(R2)

no  or  Cμ
ναβ Λ
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Magnitude of the effect locally:

μ =
8πG
c2 ∫

r

0
ρ(r′ ) (r − r′ ) dr′ =

4πG ρ(0)
c2

r2 + O(r3)

Tμν = ρ UμUνnegligible pressure (dust)

Galactic scales

mass density of the thin disc of the Milky Way

most distant trigonometric parallax measured 

ρ ≈ 1 M⊙ pc−1

r ≈ 20 kpc

μ ≈ 2 ⋅ 10−4
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MK, E. Villa, Geometric optics in relativistic cosmology: New formulation and a new observable, 
Phys. Rev. D 101, 063506 (2020)

Measurements of the annual parallax on cosmological scales impossible today

…but we may use the motion of the Solar System wrt CMB frame in the future [Kardashev 1986, 

Rosquist 1988, Kasai 1988, Räsänen 2014, Quercellini et al 2012, Marcori et al 2018], 78AU/year

Need sources for which two methods of distance determination are possible (+ big sample)

Assume this measurement is possible. Signal? What can we learn?

quasars as standard candles [Panda et al 2018; Risalti & Lusso 2018]
Dlum, z, Dpar

SN1a + host galaxy identification Dlum, z, Dpar

quasars as standard rulers (reverberation mapping + interferometry) [Sturm et al (GRAVITY 
collab.) 2018, Elvis & Karovska 2002, Panda et al 2019] Dang, Dpar
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μ = 1 − ( 1
1 + z

(Ck(χ) + H0 Sk(χ)))
2

χ(z) = ∫
z

0

dz′ 

H(z′ )

ds2 = − dt2 + a(t)2(dχ2 + Sk(χ)2 dΩ2)

H0
H0 LCDM, Planck values

Ωm0 = 0.266018

H0 = 67.4

ΩΛ0 = 0.732982

Ωk0 = 0
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Low redshift expansion

μ(z) =
3
2

Ωm0 z2 + (−
1
2

Ωm0 −
3
2

Ωm0 Ωk0 −
9
4

Ω2
m0) z3 + O(z4)

dimensionless  vs dimensionless z ⟹ no H0μ

leading order term gives a measurement of 𝛺m0

independent from any other measurements



 in cosmology μ

13

m vs Dang diagram

μ(Dang) =
3
2

Ωm0 H2
0 D2

ang +
5
2

Ωm0 H3
0 D3

ang + O(D4
ang)



 in cosmology μ

13

m vs Dang diagram

bypassing z as observable

μ(Dang) =
3
2

Ωm0 H2
0 D2

ang +
5
2

Ωm0 H3
0 D3

ang + O(D4
ang)



 in cosmology μ

13

m vs Dang diagram

bypassing z as observable

4πGρ0

leading order term gives a measurement of 𝜌0

μ(Dang) =
3
2

Ωm0 H2
0 D2

ang +
5
2

Ωm0 H3
0 D3

ang + O(D4
ang)



 in cosmology μ

13

m vs Dang diagram

bypassing z as observable

both quantities independent of uE!

4πGρ0

leading order term gives a measurement of 𝜌0

μ(Dang) =
3
2

Ωm0 H2
0 D2

ang +
5
2

Ωm0 H3
0 D3

ang + O(D4
ang)



 in cosmology μ

13

m vs Dang diagram

bypassing z as observable
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 in cosmology μ

13

m vs Dang diagram

bypassing z as observable

both quantities independent of uE!

diagram insensitive to the peculiar motions of the sources! No redshift space distortions.

4πGρ0

leading order term gives a measurement of 𝜌0

potentially very robust measurement, independent from others

μ(Dang) =
3
2

Ωm0 H2
0 D2

ang +
5
2

Ωm0 H3
0 D3

ang + O(D4
ang)
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This can be extended to a general, non-perturbative result

If , we have initially Tμν lμ lν ≥ 0 μ ≥ 0

M. K., J. Serbenta, „Testing the null energy condition with precise distance measurements”, Phys. 
Rev. D 105, 084017 (2022)

⟹ Dpar ≥ Dang

μ = 1 −
D2

ang

D2
par

=
8πG
c4 ∫

λℰ

λ𝒪

Tμν lμ lν (λℰ − λ) dλ + O(Riemann2)

Recall that:



Distance inequality

15

Infinitesimal bundles of null rays

ξA(λ) = WXL
A

B(λ) ∇lξB(λ𝒪) ξA(λ) = WXX
A

B(λ) ξB(λ𝒪)



Distance inequality

15

Infinitesimal bundles of null rays

ξA(λ) = WXL
A

B(λ) ∇lξB(λ𝒪) ξA(λ) = WXX
A

B(λ) ξB(λ𝒪)

Alternative description

BAB =
1
2

θ δAB + σ(AB) + ω[AB] = 0∇lξA(λ) = BA
C(λ) ξC(λ)



Distance inequality

15

Infinitesimal bundles of null rays

ξA(λ) = WXL
A

B(λ) ∇lξB(λ𝒪) ξA(λ) = WXX
A

B(λ) ξB(λ𝒪)

Alternative description

BAB =
1
2

θ δAB + σ(AB) + ω[AB] = 0∇lξA(λ) = BA
C(λ) ξC(λ)

Singular points of bundles Focal point:

θ, σAB → ∞

det WA
B = 0 det WXX

A
B = 0

Dpar → ∞
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• NEC holds, i.e. Rμν lμ lν ≥ 0

• The bundle of rays parallel at O has no singular 
points between E and O

then

• Moreover,  iff no Ricci focusing or Weyl focusing 
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Theorem:

• NEC holds, i.e. Rμν lμ lν ≥ 0

• The bundle of rays parallel at O has no singular 
points between E and O

then

• Moreover,  iff no Ricci focusing or Weyl focusing 

along the way, i.e.

Dpar = Dang

Rμν lμ lν = 0 CA
μνB lν lν = 0

• Dpar ≥ Dang

If NEC holds, then both Ricci focusing and Weyl shear cause  at least up to 

the first focal point counting from O

Dpar > Dang

lμ
𝒪
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Idea of the proof: relate  to the gravitational focusing of raysμ

μ = 1 − det (WXX)A
B = 1 −

D2
ang

D2
par

up to the first focal point

ODE for A(λ)

dA
dλ

= A(λ) θ(λ) ⟹ A(λ) = A(λ𝒪) exp (∫
λ

λ𝒪

θ(λ) dλ) up to the first focal point

dθ
dλ

= −
θ2

2
− σAB σAB − Rμνlμlν ⟹ θ(λ) ≤ 0 up to the first focal point
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• Alternative baseline averaging via the trace of  [Räsänen 2014, Rosquist 1988, Ellis et 
al 1971…]:

ΠA
B

D̃par =
2

ΠA
A

There is a similar theorem asserting that  if O and E sufficiently closeD̃par ≥ Dang
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• Alternative baseline averaging via the trace of  [Räsänen 2014, Rosquist 1988, Ellis et 
al 1971…]:

ΠA
B

D̃par =
2

ΠA
A

There is a similar theorem asserting that  if O and E sufficiently closeD̃par ≥ Dang

• However for a single baseline-based parallax distance the inequality may fail if Weyl large enough

• , no shear  all parallax distance definitions equivalent, inequality works for allCAμνB lμ lν = 0 ⟹

• Past the first focal point the inequality may not hold even if NEC holds

J. Serbenta, M. K., Class. Quantum Grav. 39 155002 (2022) 

Schwarzschild metric
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• Focal points are located very far away (except strongly lensed regions)

Milky Way gravitational potential: 1-10 Mpc at least

Restriction probably not that important

• Precision of distance measurement required seems like a bigger problem

• [Räsänen 2014] - proposed consistency tests of FLRW metric based on comparison 
of  and Dpar Dang

We propose a simple test of NEC + light propagation in GR: the sign of the 
difference between  and Dpar Dang

Wrong sign would be difficult to explain within GR as we understand it today



Summary

• In GR parallax distance  is different from angular diameter 
distance  (and the related luminosity distance )


• Their relative difference  (distance slip) carries information about 
the matter density along the line of sight. Very small effect though.


• Kinematic invariance of 


• Sign of  related directly to the null energy condition (NEC)

Dpar
Dang Dlum

μ

μ

μ

20

Thank you!


