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GW-GRB 170817

First detection of
gravitational wave signal
accompanied with
electromagnetic
counterpart

The GW waveform
consistent with merger of
two neutron stars, with a
total mass of 2.82M�

High energy emission in a
form of a weak short GRB
was detected about 1.74
second after the merger.



Kilonova observation

Rapidly fading electromagnetic transient in the galaxy NGC4993, is

spatially coincident with GW170817 and a weak short gamma-ray burst

(e.g., Smartt et al. 2017; Zhang et al. 2017, Coulter et al. 2017,

Murguia-Berthier et al. 2017)



Kilonova

NS-NS mergers eject material
rich in heavy radioactive
isotopes. Powering
electromagnetic signal called a
kilonova (e.g. Li & Paczynski
1998; Tanvir et al. 2013, Berger
2016).

Dynamical ejecta from compact
binary mergers, Mej ∼ 0.01M�,
can emit about 1040 − 1041

erg/s in a timescale of 1 week

Subsequent accretion can
provide bluer emission, if it is
not absorbed by precedent
ejecta (Tanaka, 2016)



r-process nucleosynthesis

Nuclear reaction network calculation.
See e.g. (Janiuk A., 2014, A&A; 2019, ApJ) for studies of
nucleosynthesis in black hole accretion disks as the GRB central
engines)



Origin of the heavy elements



Kilonova colors

2nd peak
Ye ≡ ne

nb
= (0.25, 0.5)

3rd peak
Ye = (0.15, 0.25)
(Ji et al. 2019)



Radioactive decay power

Day-timescale emission
comes at optical
wavelengths from
lanthanide-free
components, and followed
by week-long emission
with a spectral peak in
the near-infrared

Monte-Carlo radiative
transfer code (Wollaeger
et al. 2021)

Figure 3. from A Broad Grid of 2D Kilonova Emission Models
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Our tool: solving GR MHD simulations

HARM code: High Accuracy Relativistic Magnetohydrodynamics
(Gammie et al. 2003). The code provides solver for continuity and
energy-momentum conservation and induction equations in GR:

∇µ(ρuµ) = 0; ∇µTµ
ν = 0; ∇µ(uνbµ − uµbν) = 0

Energy tensor contains in general the gas and electromagnetic
parts:

Tµν = Tµν
gas + Tµν

EM

Tµν
gas = ρhuµuν + pgµν = (ρ+ u + p)uµuν + pgµν

Tµν
EM = b2uµuν +

1

2
b2gµν − bµbν ; bµ = uν

∗
F
µν

where u is internal energy, uµ is four-velocity of gas, and
bµ = 1

2ε
µνρσuνFρσ. In force-free approximation, Eν = uµF

µν = 0.
EOS in simplest case is that of ideal gas

p = Kργ = (γ − 1)u



Initial Conditions

After the two neutron stars merge, the remnant is a transient
HMNS object, and then collapses to a black hole.

BH is surrounded by a remnant accretion disk, that contains
highly neutron-rich material.

Initial conditions for our model invoke torus in the pressure
equilibrium.

Pressure maximum location, rmax , is our parameter, and the
specific angular momentum is constant with radius (cf.
Fishbone & Moncrief 1978)

We adopt weak magnetic field in poloidal configuration, set by
its vector potential Aφ = max(ρ/ρmax − ρ0, 0) and normalized
to constant gas-to-magnetic pressure ratio β = 100.



Chemical composition and structure of the disk

Due to high density, disk is opaque to photons.

Neutrinos, created via β-reactions, electron-positron
anihillation, and plasmon decay.

Disk is composed of free nucleons, electron-positron pairs, and
Helium nuclei.

Magnetic fields transport angular momentum outwards, via
turbulence. Disk becomes thinner, and accretion proceeds.

Magnetic dissipation help drive unbound outflows from the
disk surface.

In addition, neutrino-driven wind ejects material. As the
ejecta expand, they cool down, and heavy elements are
synthesized via rapid neutron capture process.



Set of equations for evolving neutrino cooled disk

Neutrinos carry away energy and lepton number, so they alter
electron fraction and composition of ejected material.

Dynamical simulations must consider the realistic equation of
state (EOS) and impact of neutrinos in the optically thin and
thick regions.

Lepton number conservation

∇µ(neu
µ) = R/mb; mb = ρ/nb; Ye =

ne
nb

=
mbne
ρ

where Ye is the electron fraction.
Because the baryons dominate the rest-mass density, the baryon
number conservation equation turns to regular continuity equation.
In the energy-momentum conservation equation, we will have a
source term due to heating and cooling by neutrinos.

∇µTµ
ν = Quν



Conserved variables

GR MHD scheme is evolving conserved variables

∂tU(P) = −∂iFi (P) + S(P)

which for S = 0 depend only on fluxes at boundaries.

P are the ’primitive variables, which are subject to the EOS.
In non-relativistic MHD, both P→ U and U→ P have a
closed-form solution. In GRMHD U(P) is a complicated,
nonlinear relation. Inversion P(U) is calculated once or twice
in every time step, numerically, by the recovery scheme.



Conserved variables

Explicit form of primitive and conserved variables, fluxes, and
source terms, is:

P = [ρ, Bk , ũi , Ye , T ]

U(P) =
√
−g [ρut , T t

t + ρut , T t
j , B

k , ρYeu
t ]

Fi (P) =
√
−g [ρui , T i

t + ρui , T i
j , (biuk − bkui ), ρYeu

i ]

S(P) =
√
−g [0, Tκ

λ Γλtκ +Qut , Tκ
λ Γλtκ +Qui , 0, R]

Here B i = Bi/α =
∗
F
it

is magnetic field, and ũµ = (δµν + nµnν)uν

is the projected four-velocity, where the orthognal frame velocity is
nµ = [−α, 0, 0, 0], nµ = [1/α,−βi/α], with lapse α = 1/

√
g tt , and

shift function βi = −g ti/g tt .
The fluid three velocity is then v i = ũi/γ = ũi/αut .



Recovery transformation

No analytic expression of the primitive variables in terms of
conserved variables

Transformation between ’conserved’ (momentum, energy
density) and ’primitive’ (rest mass density, internal energy)
variables requires to solve a set of 5 non-linear equations

Inversion is complex for a non-adiabatic relation of the
pressure with density



Equations of state

There can be two main types of EOS

1 Analytic

Polytrope p(ρ) = κρΓ, ε(ρ) = κ
Γ−1ρ

Γ−1

Ideal gas (gamma-law): p(ρ) = (Γ− 1)ρε

2 Tabulated

1-parameter ε(ρ), Pε(ρ)
2-parameter ε(ρ,T ), Pε(ρ,T )
3-parameter ε(ρ,T ,Ye), Pε(ρ,T ,Ye)

It is also possible to construct hybrid EOS, with analytic and
tabulated components, e.g. depending on temperature range



Recovery methods overview

We need to recover the primitive variables, as they are required to
construct Tµν and flux terms in fluid evolution. Recovery methods
can lead to bounded or unbounded solution

Newton-Raphson methods are unbounded. They have faster
convergence but are less stable

Bracketed root finding methods are slower, but more robust

A simple 1D method can be used for an analytic EOS.

We find a root of equation, by means of NR method

f (p) = p − p̄(ρ(U, p), ε(U, p)) = 0

where p is the current pressure guess, and p̄(ρ, ε) is pressure
found from the EOS.

The derivative of df /dp is needed. Obtaining ∂p̄
∂ρ and ∂p̄

∂ε is
easy only when EOS is analytic.



Tabulated EOS used in HARM COOL code

In the non-adiabatic regime, we employ a tabulated equation
of state, where thermodynamic variables (e.g. pressure,
energy, and speed of sound) and chemical potentials of
species (incl. neutrinos) are given as a function of density,
temperature and electron fraction.

Linear interpolation is done to find variables over the
computational grid (Janiuk et al., 2019; cf. O’Connor & Ott
2010)

High density regime: fluid consists of free n, p, e+, e−, alpha
particles and photons.

Low density regime: nuclear statistical equilibrium (NSE)



Recovery schemes: 2D and 3D

In a 2D scheme, there are two independent variables, e.g, v2

and specific enthalpy W . Temperature is obtained from the
tables, solving h = h(ρ,T ,Ye), and pressure and temperature
are also obtained by Newton-Raphson method for W and v2.

Alternatively, the system of GR MHD equations is reduced to
3 equations, which have three unknowns.
The chosen independent variables can be: γ, T , and
W = hργ2. Pressure is interpolated from EOS tables, as
P(ρ,T ,Ye).



2D recovery scheme of Noble et al. (2006)

The scheme reduces the dimensionality of the recovery problem by
making use of certain scalar quantities that can be computed from
the conservatives. This 2D scheme solves simultaneously the set of
two equations:

f1 : Q̃2 = v2(B2 + W )2 − (QµBµ)2(B2 + 2W )

W 2

f2 : Qµn
µ = −B

2

2
(1 + v2) +

(QµBµ)2

2W 2
−W + p(u, ρ)



2D recovery scheme of Noble et al. (2006)

The independent variables used in this scheme are defined as:
Qµ = −nµT ν

µ = αT t
µ;

where Q̃ν = jνµQ
µ is energy-momentum density in the normal

obsever frame,
and D = −ρnµuµ = αρut = γρ;
is mass density in the observer’s frame,

and Bi = αB i = α
∗
F
it

is magnetic 3-vector.
and w = ρ+ u + p with W = wγ2 is enthalpy
(note it is original notation)
To solve this 2-D set of equations by means of Newton-Raphson
method, the Jacobian matrix with ∂f1

∂(v2)
, ∂f2
∂(v2)

, ∂f1
∂W , and ∂f2

∂W is

needed. Note that this scheme does not require an analytic EOS,
and derivatives of pressure wtr. to ρ, v2, and u may be computed
from tables using finite difference method.



3D recovery scheme of Siegel et al. (2018)

The system is extended to solve 3 equations, on W , z , and T , by
adding a constraint on the internal energy given by EOS tables.

f1 : [τ + D − z − B2 +
B iSi
2z2

+ ρ]W 2 − B2

2
= 0

f2 : [(z + B2)2 − S2 − 2z + B2

z2
(B iSi )

2]W 2 − (z + B2)2 = 0

f3 : ε− ε(ρ,T ,Ye) = 0

Here the temperature is employed directly as an unknown through

ε(W , zT ) = h − 1− P
ρ = z−DW−ρW 2

DW and does not require
inversion of the EOS. Notice here different notation: Si is
energy-momentum density, W is Lorentz factor, z is enthalpy, and
τ = −(nµnνT

µν + D).



Convergence tests

Parameters:
Ye = 0.1, γ = 2,
pgas/pmag = 105.

Conserved variables
derived in Kerr
metric, then
primitives perturbed
by a factor of 1.05.

Variables recovered
through the 2D
scheme compared
to the unperturbed,
to calculate Err =
Σk=0,NPR(Pk−P̄k)2



Convergence tests

Method 1: we compute specific internal energy from state
vector x and conservatives as in Eq. (25) in Cerda-Duran et
al. (2008), and solve f3

Method 2: we compute pressure from state vector x and
conservatives and solve f3



Palenzuela method

The scheme is solving 1D equation, for the rescaled variable

χ =
ρhγ2

ργ

Other quantities are also rescaled, accordingly, to give Lorentz
factor (cf. Palenzuela et al., 2015), and we give the brackets for χ:

2− 2
Qµn

µ + D

D
− B

2

D
< χ < 1− Qµn

µ + D

D
− B

2

D

The equation

f (χ) = χ− γ̃(1 + ε̃+
P̃

ρ̃
) = 0

is solved, with P̃ = P(ρ̃, ε̃,Ye)
found in tables.



Neutrino transport

We employ the neutrino leakage scheme that computes a gray
optical depth estimate along radial rays for electron neutrinos,
electron antineutrinos, and heavy-lepton neutrinos (nux), and
then computes local energy and lepton number loss terms.

Source code of the scheme downloaded from
https://stellarcollapse.org. Details: O’Connor & Ott (2010),
Ott et al. (2012).



Evolving density and electron fraction

Initial tests within an optically thin regime for neutrinos.

τ(r , θ, φ) =

∫ R

r

√
γrr κ̄νidr

′ < 2/3

Now, we calculate both Q and R which are energy loss rate and
net rate of emission/absorption of neutrinos per unit volume, and
they enter to the source terms in GR MHD equations.
Work in progress!!!



Conclusions

GR MHD simulations have been widely used to model engines
of gamma ray bursts. Now implemented to the case study of
post-merger system and kilonova source

Numerical calculations are complex and need to cover physics
of dense nuclear matter. Their performance is sensitive to the
chosen recovery schemes

Proper source terms need to be added in the system of
equations to describe evolution of neutrino losses, coupled
with composition changes



Thank you for attention!


