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GW-GRB 170817

m First detection of
gravitational wave signal
accompanied with
electromagnetic
counterpart

m The GW waveform
consistent with merger of
two neutron stars, with a
total mass of 2.82Mg

m High energy emission in a
form of a weak short GRB
was detected about 1.74
second after the merger.
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Kilonova observation
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Rapidly fading electromagnetic transient in the galaxy NGC4993, is
spatially coincident with GW170817 and a weak short gamma-ray burst
(e.g., Smartt et al. 2017; Zhang et al. 2017, Coulter et al. 2017,
Murguia-Berthier et al. 2017)



Kilonova

m NS-NS mergers eject material
rich in heavy radioactive
isotopes. Powering
electromagnetic signal called a
kilonova (e.g. Li & Paczynski
1998; Tanvir et al. 2013, Berger
2016).

m Dynamical ejecta from compact
binary mergers, M; ~ 0.01Mp),
can emit about 10%° — 10
erg/s in a timescale of 1 week

GRB central
Engine

m Subsequent accretion can
provide bluer emission, if it is
not absorbed by precedent
ejecta (Tanaka, 2016)




r-process nucleosynthesis
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Nuclear reaction network calculation.
See e.g. (Janiuk A., 2014, A&A; 2019, ApJ) for studies of
nucleosynthesis in black hole accretion disks as the GRB central

engines)



Origin of the heavy elemen
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Kilonova color
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Radioactive decay power

m Day-timescale emission
comes at optical
wavelengths from
lanthanide-free
components, and followed
by week-long emission
with a spectral peak in
the near-infrared

m Monte-Carlo radiative

transfer code (Wollaeger
et al. 2021)

Figure 3. from A Broad Grid of 2D Kilonova Emission Models
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Our tool: solving GR MHD simulations

HARM code: High Accuracy Relativistic Magnetohydrodynamics
(Gammie et al. 2003). The code provides solver for continuity and
energy-momentum conservation and induction equations in GR:

Vu(pu")=0; V,T)'=0; V,(u'b'—u'b")=0

Energy tensor contains in general the gas and electromagnetic
parts:
wy _ Tuv g
TH = Tii+ Tepm

gas

Th = phutu” + pgh” = (p + u+ p)u'u” + pgh”
1 *
Tem = bB2utu + §b2g“y — BB, b =u, F"

where u is internal energy, u* is four-velocity of gas, and
b* = %e“”p"upra. In force-free approximation, E, = u,F*" = 0.
EOS in simplest case is that of ideal gas

p=Kp'=(y—1u



Initial Conditions

m After the two neutron stars merge, the remnant is a transient
HMNS object, and then collapses to a black hole.

m BH is surrounded by a remnant accretion disk, that contains
highly neutron-rich material.

m Initial conditions for our model invoke torus in the pressure
equilibrium.

m Pressure maximum location, rpax, is our parameter, and the
specific angular momentum is constant with radius (cf.
Fishbone & Moncrief 1978)

m We adopt weak magnetic field in poloidal configuration, set by
its vector potential Ay = max(p/pmax — po,0) and normalized
to constant gas-to-magnetic pressure ratio 8 = 100.



Chemical composition and structure of the disk

m Due to high density, disk is opaque to photons.

m Neutrinos, created via 3-reactions, electron-positron
anihillation, and plasmon decay.

m Disk is composed of free nucleons, electron-positron pairs, and
Helium nuclei.

m Magnetic fields transport angular momentum outwards, via
turbulence. Disk becomes thinner, and accretion proceeds.

m Magnetic dissipation help drive unbound outflows from the
disk surface.

m In addition, neutrino-driven wind ejects material. As the
ejecta expand, they cool down, and heavy elements are
synthesized via rapid neutron capture process.



Set of equations for evolving neutrino cooled disk

m Neutrinos carry away energy and lepton number, so they alter
electron fraction and composition of ejected material.

m Dynamical simulations must consider the realistic equation of
state (EOS) and impact of neutrinos in the optically thin and
thick regions.

Lepton number conservation
Mpne
p

Ne
vu(neu“) = R/mb, mp = p/nb, Ye — n7b —

where Y, is the electron fraction.

Because the baryons dominate the rest-mass density, the baryon
number conservation equation turns to regular continuity equation.
In the energy-momentum conservation equation, we will have a
source term due to heating and cooling by neutrinos.

T“ = Qu,



Conserved variables

m GR MHD scheme is evolving conserved variables
9:U(P) = —0;F'(P) + S(P)

which for S = 0 depend only on fluxes at boundaries.

m P are the 'primitive variables, which are subject to the EOS.
In non-relativistic MHD, both P — U and U — P have a
closed-form solution. In GRMHD U(P) is a complicated,
nonlinear relation. Inversion P(U) is calculated once or twice
in every time step, numerically, by the recovery scheme.



Conserved variables

Explicit form of primitive and conserved variables, fluxes, and
source terms, is:
P=[p, B @' Ye, T]
U(P) = v/=glpu, T{ +pu', T}, B, pYeu']
Fi(P) = /—glpu', T+ pu', TJ-", (b'u* — bku’), pYeu']
S(P) = v=g[0, T{T + Que, TETR. + Qui, 0, R]

Here B/ = B' /o, = F"* is magnetic field, and " = (65 + n*ny)u”
is the projected four-velocity, where the orthognal frame velocity is
n, = [~,0,0,0], n* = [1/a, —B/a], with lapse a = 1//g*, and
shift function g’ = —gt /gt

The fluid three velocity is then v/ = i’ /vy = i’ /aut.



Recovery transformation

m No analytic expression of the primitive variables in terms of
conserved variables

m Transformation between 'conserved’ (momentum, energy
density) and 'primitive’ (rest mass density, internal energy)
variables requires to solve a set of 5 non-linear equations

m Inversion is complex for a non-adiabatic relation of the
pressure with density



Equations of state

There can be two main types of EOS
Analytic
m Polytrope p(p) = rp", €(p) =
m |deal gas (gamma-law): p(p)
Tabulated
m 1-parameter €(p), Pc(p)
m 2-parameter €(p, T), Pc(p, T)
m 3-parameter ¢(p, T, Ye), Pc(p, T, Ye)
It is also possible to construct hybrid EOS, with analytic and
tabulated components, e.g. depending on temperature range

[N
—iP '
= (M —1)pe



Recovery methods overview

We need to recover the primitive variables, as they are required to
construct TH*” and flux terms in fluid evolution. Recovery methods
can lead to bounded or unbounded solution

m Newton-Raphson methods are unbounded. They have faster
convergence but are less stable

m Bracketed root finding methods are slower, but more robust
A simple 1D method can be used for an analytic EOS.

m We find a root of equation, by means of NR method

f(p) = p—B(p(U,p), (U, p)) =0
where p is the current pressure guess, and p(p, €) is pressure
found from the EOS.

m The derivative of df /dp is needed. Obtaining g—g and 8—’:
easy only when EQOS is analytic.

S



Tabulated EOS used in HARM_COOL code

m In the non-adiabatic regime, we employ a tabulated equation
of state, where thermodynamic variables (e.g. pressure,
energy, and speed of sound) and chemical potentials of
species (incl. neutrinos) are given as a function of density,
temperature and electron fraction.

m Linear interpolation is done to find variables over the
computational grid (Janiuk et al., 2019; cf. O'Connor & Ott
2010)

m High density regime: fluid consists of free n, p, e™, e™, alpha
particles and photons.

m Low density regime: nuclear statistical equilibrium (NSE)



Recovery schemes: 2D and 3D

m In a 2D scheme, there are two independent variables, e.g, v
and specific enthalpy W. Temperature is obtained from the
tables, solving h = h(p, T, Ye), and pressure and temperature
are also obtained by Newton-Raphson method for W and v2.

m Alternatively, the system of GR MHD equations is reduced to
3 equations, which have three unknowns.
The chosen independent variables can be: +, T, and
W = hpy?. Pressure is interpolated from EOS tables, as
P(p, T, Ye).



2D recovery scheme of Noble et al. (2006)

The scheme reduces the dimensionality of the recovery problem by
making use of certain scalar quantities that can be computed from
the conservatives. This 2D scheme solves simultaneously the set of
two equations:

(QuBM)>2(B2 + 2W)
w2
(QuB")>

BZ
fo: Qu”“:—7(1+V2)+W—W+P(U,P)

fi @2:V2(B2+W)2_



2D recovery scheme of Noble et al. (2006)

The independent variables used in this scheme are defined as:

Qu = —nMNT;L’ =aTf;

where Q" = j;;Q" is energy-momentum density in the normal
obsever frame,

and D = —pn,ut = aput = ~p;

is mass density in the observer’s frame,

and B' = aB = oF" is magnetic 3-vector.

and w=p+u+p with W=wy?is enthalpy

(note it is original notation)

To solve this 2-D set of equations by means of Newton-Raphson
method, the Jacobian matrix with 50%y, 523y, Gy, and g7 is
needed. Note that this scheme does not require an analytic EOS,
and derivatives of pressure wtr. to p, v2, and u may be computed
from tables using finite difference method.




3D recovery scheme of Siegel et al. (2018)

The system is extended to solve 3 equations, on W, z, and T, by
adding a constraint on the internal energy given by EOS tables.

B'S; | B?
. .o B 2
fi: T+D—-z—-B 22 + p]W* — - =0
27 + B2
hi lz+B2?— 52— L2 (BISPW? — (2 + B2 =0

f3: e—¢€(p, T,Ye)=0

Here the temperature is employed directly as an unknown through
2
e(W,zT)=h—-1- % = % and does not require
inversion of the EOS. Notice here different notation: §; is
energy-momentum density, W is Lorentz factor, z is enthalpy, and
—(nun, T + D).



Convergence tests

m Parameters:
Ye =0.1, v =2,
pgas/pmag = 105
“ m Conserved variables
derived in Kerr
metric, then

Inversion method test. 2D scheme

2 primitives perturbed
g -10 by a factor of 1.05.
12 m Variables recovered

through the 2D
scheme compared
to the unperturbed,
to calculate Err =

T k—o,nPR(Pk— Pk)?

log Rho [g/cm3]



Convergence tests

Inversion method test. 3D scheme-v1 Inversion method test. 3D scheme-v2

log T [K]
log T [K]

log Rho [g/cm3] log Rho [g/cm3]

m Method 1: we compute specific internal energy from state
vector x and conservatives as in Eq. (25) in Cerda-Duran et
al. (2008), and solve f3

m Method 2: we compute pressure from state vector x and
conservatives and solve f3



Palenzuela method

The scheme is solving 1D equation, for the rescaled variable

_ phy?
Py
Other quantities are also rescaled, accordingly, to give Lorentz
factor (cf. Palenzuela et al., 2015), and we give the brackets for x:

Inversion method test. Palenzuela scheme

) 4 The equation
. . . P
f(x) =><—v(1+6+5) =0
" s solved, with P = P(j, ¢, Ye)

found in tables.

5

log T [K]
o N ® o©

log Rho [g/cm3]



Neutrino transport

m We employ the neutrino leakage scheme that computes a gray
optical depth estimate along radial rays for electron neutrinos,
electron antineutrinos, and heavy-lepton neutrinos (nux), and
then computes local energy and lepton number loss terms.

m Source code of the scheme downloaded from

https://stellarcollapse.org. Details: O'Connor & Ott (2010),
Ott et al. (2012).



Evolving density and electron fraction

Initial tests within an optically thin regime for neutrinos.
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Now, we calculate both @ and R which are energy loss rate and
net rate of emission/absorption of neutrinos per unit volume, and
they enter to the source terms in GR MHD equations.

Work in progress!!!



Conclusions

m GR MHD simulations have been widely used to model engines
of gamma ray bursts. Now implemented to the case study of
post-merger system and kilonova source

m Numerical calculations are complex and need to cover physics
of dense nuclear matter. Their performance is sensitive to the
chosen recovery schemes

m Proper source terms need to be added in the system of
equations to describe evolution of neutrino losses, coupled
with composition changes



Thank you for attention!



