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“Non-Euclidean topologies”

Not characterised by the scalar curvature, but by topological properties:

For a homogeneous and isotropic solution:

In general:
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Class of topology Euclidean (X = E°)

(i.e. covering space 2.)

Physical regime

Relativistic regime R, =«T% + Ag,,

Non-relativistic regime A® = 4zG (P — <P>)’

(i.e. Newtonian) ngij —

Questions:
How to define a Newtonian theory on a non-Euclidean topology?
Compatibility with Einstein’s equation?
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Class of topology Euclidean (X = E°) ~N°n Euclidean (Zjé )
(i.e. covering space X) Spherical (X =S”)  Hyperbolic (£ = H?)

Physical regime » Others

Relativistic regime R/w = KT;}‘V + Agm/ R,,w — KTffy + Agﬂy

Non-Euclidean Newtonian theory

Non-relativistic regime A® = 4zG (P B <P>)’
(i.,e. Newtonian) ngij — ?
Questions:

How to define a Newtonian theory on a non-Euclidean topology? | |
Study of the cosmological backreaction

} Main physical motivation:
[Vigneron (a) (2022), 2109.10336]

Compatibility with Einstein’s equation?


https://arxiv.org/abs/2109.10336
https://arxiv.org/abs/2109.10336
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Non-Euclidean Newtonian theory

AD = 47G (p — (p)),
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9 Non-relativistic regime
(i.,e. Newtonian)

Questions:

How to define a Newtonian theory on a non-Euclidean topology? | |
Study of the cosmological backreaction

} Main physical motivation:
[Vigneron (a) (2022), 2109.10336]

Compatibility with Einstein’s equation?
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Lorentzian manifold

4-manifold ./ + Lorentzian structure (g, 4V):
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Lorentzian manifold Galilean manifold [e.g. Kiinzle (1972)]

4-manifold ./ + Lorentzian structure (g, V):  4-manifold .# + Galilean structure (h,z,*V):
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DEFINITION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold Galilean manifold [e.g. Kiinzle (1972)]

4-manifold ./ + Lorentzian structure (g, V):  4-manifold .# + Galilean structure (h,z,*V):
g = M+ “ h - h symmetric (2,0)-tensor of rank 3

- —> T closed 1-form
4V = m - U= * —> 7" =0,
_ 4@ _ m —>4@Mh“ﬁ =0 4@0[@ = ().

Einstein’s equation: Newton-Cartan equation [e.g. Kiinzle (1972)]:

K — oK ‘
R aufp — KT,MV + Ag/,u/ eoa:_\a\py R'Ma,uﬂ — KT/TI/ — AT,MTI/

g% = V" 4 2HV" — (apyray)”

Newton’s equations
o aue A®D = 476G (p — (p))
with expansion P (3H Vl-vi) —0
[Vigneron (2021), 2012.10213]
g=Q /2 —-Q,

%l]:O
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DEFINITION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold Galilean manifold [e.g. Kiinzle (1972)]

4-manifold ./ + Lorentzian structure (g, V):  4-manifold .# + Galilean structure (h,z,*V):
g = M+ “ h - h symmetric (2,0)-tensor of rank 3

- —> T closed 1-form
4V = m - U= * —> 7" =0,
4@ _ m —>4@Mh“ﬁ =0 4@0[@ = ().

Einstein’s equation: Newton-Cartan equation [e.g. Kiinzle (1972)]:

/’t —— * . O\‘,\O‘\ A
R aufp — KT,MV + Ag/,u/ eoa:_\a\py R'Ma,uﬂ — KT/ZKI/ — AT/ATI/

Qa — "}Cl + ZHVCI — (a:égmv)a
Definition: A non-Euclidean Newtonian theory is a theory defined on a Galilean manifold whose spatial
sections have a non-Euclidean topology. It is given by equations relating the Riemann tensor of the
Galilean structure to the energy content of the manifold. [Vigneron (b) (2022), 2201.02112]
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Class of topology Euclidean (X = E°) ~Non Euclidean (Zjé )
(i.e. covering space X) Spherical (X =S”)  Hyperbolic (£ = H?)

Physical regime » Others

Relativistic regime R/w — KT/;I; + Ag/w R,,w — KT,Zky + Ag,w
(g, V)
C = OO
Non-relativistic regime ﬁ/w = (kp/2 = Nt 7,
(i.,e. Newtonian) . N

(7, h, @)



NON-EUCLIDEAN NEWTONIAN THEORY

Newton-Cartan equation: R =1} — A7,z

Uv


https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112
https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112

NON-EUCLIDEAN NEWTONIAN THEORY

—_ ]

(Euclidean topology)
—> Needs to be modified for non-Euclidean topologies

Newton-Cartan equation: R, = kT3 — At,7,


https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112
https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112

NON-EUCLIDEAN NEWTONIAN THEORY

Newton-Cartan equation: IAQW — KT;;/ — Af;ﬂu 9{31.]. —
(Euclidean topology)

—> Needs to be modified for non-Euclidean topologies

Hypothesis for the additional term: [Kinzle (1976); Vigneron (b) (2022), 2201.02112]

Zero for Euclid topol 5 L= g
ero or. uclidean topology R, — 2Kb,, = kT% — Azz, , @l] 2Khl] |
Present in vacuum (Spherical or hyperbolic)
Second order or less in the metrics | |
b/w := orthogonal projector to a reference 4-vector G, (Galilean observer)


https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112
https://link.springer.com/article/10.1007/BF00766139
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NON-EUCLIDEAN NEWTONIAN THEORY

Newton-Cartan equation: R  =«I} — Arz, —>

UU Uy

(Euclidean topology)

—> Needs to be modified for non-Euclidean topologies

Hypothesis for the additional term: [Kinzle (1976); Vigneron (b) (2022), 2201.02112]

Zero for Euclidean topology I%MV B 2Kb/w _ KT;fy — Atz @ij — 2Khl.j
Present in vacuum (Spherical or hyperbolic)
Second order or less in the metrics _ _
b/w := orthogonal projector to a reference 4-vector G, (Galilean observer)
: Vi b) (2022), 2201.02112
Spatial equations of the non-Euclidean Newtonian theory: with =0 !gneron (b) (2022) |
Vigneron & Roukema (2022),
2nd law of Newton: Constraints on the gravitational field: preprint: 2201.09102]
gl =7 4+ 2Hy' — (a#gmv)" 2¢ = — 472G (,0 — (p)),
—  A®=41G (p - (p))
b = 0
Mass conservation: Expansion laws:
,0+3HIO+,0 vi=20 Q#Cst_l_QCS’[:l’


https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112
https://link.springer.com/article/10.1007/BF00766139
https://arxiv.org/abs/2201.02112
https://arxiv.org/abs/2201.02112
https://arxiv.org/abs/2201.02112
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https://arxiv.org/abs/2201.09102
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https://arxiv.org/abs/2201.02112
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NON-RELATIVISTIC LIMIT

The Galilean limit: a limit of structures (from a Lorentzian structure to a Galilean structure) [Kinzle (1976)].

We consider a family of Lorentzian structures {(ﬂ‘g, ’ll“}’aﬁ)}bo on a 4-manifold .Z such that:

| —— M =175+ O = 1/c?)

g% = h + 6(2)
*8up = — 77,75+ O(1)

o0

A equipped with ( ’lf’}’a ) —> == M equipped with (A, 7, OFyaﬁ)


https://link.springer.com/article/10.1007/BF00766139
https://link.springer.com/article/10.1007/BF00766139
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NON-RELATIVISTIC LIMIT

The Galilean limit: a limit of structures (from a Lorentzian structure to a Galilean structure) [Kinzle (1976)].

We consider a family of Lorentzian structures {(ﬂ‘g, ’ll“}’a/;)}bo on a 4-manifold .Z such that:

g% = h + 6(2)

bo = — lr 7, + O(1) - /lry“ﬁ = fyaﬂ + O(4 = 1/¢?)
aff — p

o0

A equipped with ( ’IFya ) —> == M equipped with (A, 7, OFyaﬁ)

Property: The differentiable manifold .Z is unchanged, and so its topology (only the structure changes).


https://link.springer.com/article/10.1007/BF00766139
https://link.springer.com/article/10.1007/BF00766139

Non-relativistic limit of the Einstein equation:

A ) A P
Rop = A7 KT aﬁ""lAgaﬁ .k = 387G,

10



NON-RELATIVISTIC LIMIT

Non-relativistic limit of the Einstein equation:

A , )
Rap = A2 kT*ap+ AN, 3 K =8aG,

1/1—>O

(Newton-Cartan equation) R, = (Kp — A) TMTV/z
Validity of the result:
for vacuum, i
for matter fluid: (2,0)-energy tensor regular at the limit AT = O(1) and ’ITMU = ﬁpfﬂfy + O(1/1).
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Non-relativistic limit of the Einstein equation:
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Validity of the result:
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NON-RELATIVISTIC LIMIT

Non-relativistic limit of the Einstein equation:

p , )
Rop = A7 KT* 45 + /IAgaﬁ . k= 8xnG,

1/1—>O

(Newton-Cartan equation) R, = (Kp — A) TMTU/z —_— ‘%lli =0
(Euclidean topology)
Validity of the result:

for vacuum,

for matter fluid: (2,0)-energy tensor regular at the limit AT = O(1) and ’ITMU = —p1,7,+ O(1/1).

Reminder: topology is unchanged by the limit!

A solution of the Einstein equation having a non-relativistic limit necessarily has a Euclidean spatial

topology, and the limit is Newton’s theory. [Vigneron (c) (2022), preprint: 2204.13980]
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A SIMPLE SOLUTION: ROSEN’S BI-METRIC THEORY

Requirements for 7 :

Is zero for a Euclidean topology
Sets the topological class (“topological term”)
Second derivative or less in the metric —> depends on an additional field

Compatible with the non-Euclidean Newtonian theory

1 £
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A SIMPLE SOLUTION: ROSEN’S BI-METRIC THEORY

Requirements for 7 :

Is zero for a Euclidean topology
Sets the topological class (“topological term”)
Second derivative or less in the metric —> depends on an additional field

Compatible with the non-Euclidean Newtonian theory

A solution: Rosen’s bi-metric theory [e.g. Rosen (1980), General relativity with a background metric]

The theory is composed of:
The physical Lorentzian metric (g, *V) and its Riemann curvature tensor R”aﬂ},

A reference non-dynamical metric (g, 4V) and its reference Riemann curvature tensor R”‘aﬁ},

Modified Einstein’s equation:

R/w - R/w = KT/;“,/ + Agﬂy

1 £
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A SIMPLE SOLUTION: ROSEN’S BI-METRIC THEORY

Requirements for 7 :

Is zero for a Euclidean topology
Sets the topological class (“topological term”)
Second derivative or less in the metric —> depends on an additional field

Compatible with the non-Euclidean Newtonian theory

A solution: Rosen’s bi-metric theory [e.g. Rosen (1980), General relativity with a background metric]
The theory is composed of:

The physical Lorentzian metric (g, *V) and its Riemann curvature tensor R” 5,

A reference non-dynamical metric (g, 4V) and its reference Riemann curvature tensor R/"aﬁ

Y
Modified Einstein’s equation:

R/w - R/w = KT;fV + Agﬂy

Our choice of reference metric: the reference metric determines the spacetime topology

most symmetric Riemannian metric given the spacetime topology M =RxXX

1 O _ -
(g"/w = (O 7 (xk)) where hij = most symmetric metric (homogeneous) on the spatial covering space 2..
4]

1 £
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A
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Class of topology Euclidean (i = —3)
(i.e. covering space 2.)

Physical regime

Relativistic regime _
9 R, =«T# + Ag,
(g, V)
C —> OO C > 0
Noh-relativistic regime R
(i.e.\Newtonian) R, = &pl2—-N)z,

(t,h,V)

Non-Euclidean (& # E°)
Spherical (X = S%)  Hyperbolic (£ = H?)

.

R, + fTW = KT;‘;U + Agﬂy

c & OO

A\

R/w —2Kb/w = (kp/2 — A)TMTV

Others
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Physical regime

Relativistic regime
(g, V)

Noh-relativistic regime

_3)

H)

, Others

(i.e \Newtonian) R, = (kp/2 = N1, R, —RY% = (kpl2 — Atz

(t,h,V)




CONSEQUENCES FOR THE ROLE OF CURVATURE

Vigneron Q., 2022, Non-relativistic regime and topology: consequences for the role of spatial curvature in cosmology, soon 1n preprint.

1. Exact homogeneous and isotropic solution:

Q) Q. =1, Q..=1, V Q
ACDM: =R TR Bi-metric: 4 K
qg=8 /2+Q —Q, gq=8Q_ /2+Q —Q,
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Reevaluation of the cosmological scenario from inflation to current time:

—> change in the inferred value of {2, from cosmological data??

Strengths of this cosmological model:

1. Origin of the modifications not related to cosmology or tensions of ACDM.

2. Has the same number of free-parameters than the ACDM model. -




