

UNIWERSYTET **MIKOŁAJA KOPERNIKA W TORUNIU**

8th POTOR

19 September 2022

NON-RELATIVISTIC REGIME AND TOPOLOGY : CONSEQUENCES FOR THE ROLE OF SPATIAL CURVATURE IN COSMOLOGY

Quentin Vigneron

Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń

Image: Curved Spaces, Jeffrey Weeks

NATIONAL SCIENCE CENTRE

MATHEMATICS AND VOCABULARY

Classification of <u>closed</u> 3-manifolds Σ (Thurston's classification):

Euclidean topology

Not characterised by the scalar curvature, but by topological properties:

The covering space $\tilde{\Sigma}$: \mathbb{E}^3

Spherical topology

Hyperbolic topology

 \mathbb{H}^3

"Non-Euclidean topologies"

+ Others

MATHEMATICS AND VOCABULARY

Classification of <u>closed</u> 3-manifolds Σ (Thurston's classification):

Not characterised by the scalar curvature, but by topological properties: The covering space $\tilde{\Sigma}$: \mathbb{E}^3 \mathbb{S}^3

For a homogeneous and isotropic solution:

In general:

 $\mathscr{R}_{ii} \neq 0$

Spherical **topology**

Hyperbolic **topology**

 \mathbb{H}^3

"Non-Euclidean topologies"

 $2Kh_{ii}$

 $\mathscr{R}_{ii} = 2Kh_{ii}$

 $\mathcal{R}_{ij} \neq 2Kh_{ij}$ with $\mathscr{R}_{ij} \neq 0$

 $\mathcal{R}_{ij} \neq 2Kh_{ij}$ with $\mathscr{R}_{ij} \neq 0$

+ Others

$$= \mathbb{E}^{3})$$
Spherical ($\tilde{\Sigma} = \mathbb{S}^{3}$) Hyperbolic ($\tilde{\Sigma} = \mathbb{H}^{3}$)
 $\wedge \Lambda g_{\mu\nu}$

$$= \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$$

$$= \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$$

Questions:

How to define a Newtonian theory on a non-Euclidean topology? Compatibility with Einstein's equation?

$$= \mathbb{E}^{3})$$
Spherical $(\tilde{\Sigma} = \mathbb{S}^{3})$ Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$
 $\tilde{\Sigma} = \mathbb{R}^{3})$, Otherwise $\Lambda g_{\mu\nu}$, $\Lambda g_{\mu\nu}$, $\Lambda g_{\mu\nu}$, $R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$
Non-Euclidean Newtonian theory
 $-\langle \rho \rangle$),
?

DEFINITION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure (g, ${}^{4}\nabla$):

ION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure (g, ${}^{4}\nabla$):

Galilean manifold [e.g. Künzle (1972)]

4-manifold \mathcal{M} + Galilean structure $(h, \tau, {}^4\hat{\nabla})$:

ION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure (g, ${}^{4}\nabla$):

Galilean manifold [e.g. Künzle (1972)]

4-manifold \mathcal{M} + Galilean structure $(h, \tau, {}^4\hat{\nabla})$:

 $\rightarrow h$ symmetric (2,0)-tensor of rank 3 - h = hormonical distribution of the first sector of the first $\rightarrow \tau$ closed 1-form $\rightarrow \tau_{\mu}h^{\mu\alpha} := 0,$ $->{}^{4}\hat{\nabla}_{\mu}h^{\alpha\beta}:=0$; ${}^{4}\hat{\nabla}_{\alpha}\tau_{\beta}:=0.$ ${}^4\hat{\nabla} =$ $R^{\mu}_{\ \alpha\mu\beta} \neq \hat{R}^{\mu}_{\ \alpha\mu\beta}$ **Spacetime curvatures**

DEFINITION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure (g, ${}^{4}\nabla$):

Einstein's equation:

$$\mathbf{R}^{\mu}_{\ \alpha\mu\beta} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

Galilean manifold [e.g. Künzle (1972)]

4-manifold \mathcal{M} + Galilean structure $(h, \tau, {}^4\hat{\nabla})$:

Newton-Cartan equation [e.g. Künzle (1972)]:

$$\hat{R}^{\mu}{}_{\alpha\mu\beta} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu}$$

ION OF A NON-EUCLIDEAN NEWTONIAN THEORY

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure $(g, {}^4\nabla)$:

-g = 1 $- {}^{4}\nabla = 4 \overline{}$

Einstein's equation:

$$R^{\mu}_{\ \alpha\mu\beta} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

Newton's equations with expansion [Vigneron (2021), 2012.10213]

$$\begin{cases} g^{a} = \dot{v}^{a} + 2Hv^{a} - (a_{\neq gr}) \\ \Delta \Phi = 4\pi G \left(\rho - \langle \rho \rangle \right) \\ \dot{\rho} + \rho \left(3H + \nabla_{i} v^{i} \right) = 0 \\ q = \Omega_{m}/2 - \Omega_{\Lambda} \\ \mathscr{R}_{ij} = 0 \end{cases}$$

Galilean manifold [e.g. Künzle (1972)]

4-manifold \mathcal{M} + Galilean structure $(h, \tau, {}^4\hat{\nabla})$:

Newton-Cartan equation [e.g. Künzle (1972)]:

atial projection $\hat{R}^{\mu}_{\alpha\mu\beta} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu}\tau_{\nu}$

a	∕≠grav	$)^a$

ION OF A NON-EUCLIDEAN NEWTONIAN

Lorentzian manifold

4-manifold \mathcal{M} + Lorentzian structure (g, ${}^{4}\nabla$):

 $- {}^{4}\nabla = \Lambda \Lambda$

Einstein's equation:

$$\mathbf{R}^{\mu}_{\ \alpha\mu\beta} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

Definition: A non-Euclidean Newtonian theory is a theory defined on a Galilean manifold whose spatial sections have a non-Euclidean topology. It is given by equations relating the Riemann tensor of the Galilean structure to the energy content of the manifold. [Vigneron (b) (2022), 2201.02112]

$$q = \Omega_{\rm m}/2 - \Omega_{\Lambda}$$
$$\mathcal{R}_{ij} = 0$$

Galilean manifold [e.g. Künzle (1972)]

4-manifold \mathcal{M} + Galilean structure $(h, \tau, {}^4\hat{\nabla})$:

Newton-Cartan equation [e.g. Künzle (1972)]:

Spatial projection
$$\hat{R}^{\mu}_{\alpha\mu\beta} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu}\tau_{\nu}$$

 $\int g^a = \dot{v}^a + 2Hv^a - (a_{\neq \text{orav}})^a$

$$= \mathbb{E}^{3})$$
Spherical ($\tilde{\Sigma} = \mathbb{S}^{3}$) Hyperbolic ($\tilde{\Sigma} = \mathbb{H}^{3}$)
 $\wedge \Lambda g_{\mu\nu}$

$$= \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$$

$$R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$$

$$R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$$

$$= \mathbb{E}^{3})$$
Spherical ($\tilde{\Sigma} = \mathbb{S}^{3}$) Hyperbolic ($\tilde{\Sigma} = \mathbb{H}^{3}$)
 $\Lambda g_{\mu\nu}$
 $\Lambda g_{\mu\nu}$
 $R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$
?

Newton-Cartan equation: $\hat{R}_{\mu\nu} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu}$

Newton-Cartan equation: $\hat{R}_{\mu\nu} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu}$

-> Needs to be **modified** for non-Euclidean topologies

Newton-Cartan equation: $\hat{R}_{\mu\nu} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu}$

-> Needs to be **modified** for non-Euclidean topologies

Hypothesis for the additional term: [Künzle (1976); Vigneron (b) (2022), 2201.02112]

- Zero for Euclidean topology
- Present in vacuum
- Second order or less in the metrics

 $\hat{R}_{\mu\nu}$

 $b_{\mu\nu}$:= orthogonal projector to a reference 4-vector G, (Galilean observer)

Newton-Cartan equation: $\hat{R}_{\mu\nu} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu}$

-> Needs to be **modified** for non-Euclidean topologies

Hypothesis for the additional term: [Künzle (1976); Vigneron (b) (2022), 2201.02112]

- Zero for Euclidean topology
- Present in vacuum
- Second order or less in the metrics

Spatial equations of the non-Euclidean Newtonian tl

2nd law of Newton:	Constraint
$g^{i} = \dot{v}^{i} + 2Hv^{i} - (a_{\neq \text{grav}})^{i}$	$\nabla_{c}g^{c} = -$
	$\nabla_{[a}g_{b]} = 0$
Mass conservation:	Expansion
$\dot{\rho} + 3H\rho + \rho \nabla_i v^i = 0$	$\int \Omega_{\neq cst} +$
	$\int q = \Omega_{\rm m}$

103

 $\hat{R}_{\mu
u}$ -

$$- 2Kb_{\mu\nu} = \kappa T^*_{\mu\nu} - \Lambda \tau_{\mu} \tau_{\nu} \longrightarrow \mathscr{R}_{ij} = 2Kh_{ij}$$
(Spherical or hyperbolic)

 $b_{\mu\nu}$:= orthogonal projector to a reference 4-vector G, (Galilean observer)

heory: with
$$\mathscr{R}_{ij} = 2Kh_{ij} \neq 0$$

its on the gravitational field:

[Vigneron (b) (2022), 2201.02112] [Vigneron & Roukema (2022), preprint: 2201.09102]

$$\begin{array}{ccc} -4\pi G\left(\rho - \langle \rho \rangle\right), \\ 0 \end{array} \longrightarrow \quad \Delta \Phi = 4\pi G\left(\rho - \langle \rho \rangle\right)$$

n laws:

$$-\Omega_{\rm cst} = 1,$$

m/2 - Ω_{Λ}

$$= \mathbb{E}^{3})$$
Spherical ($\tilde{\Sigma} = \mathbb{S}^{3}$) Hyperbolic ($\tilde{\Sigma} = \mathbb{H}^{3}$)
 $\Lambda g_{\mu\nu}$
, $\Lambda g_{\mu\nu} = \kappa T^{**}_{\mu\nu} + \Lambda g_{\mu\nu}$

 $-\Lambda)\tau_{\mu}\tau_{\nu}$

Vigneron Q., 2021, 1+3 -Newton-Cartan system and Newton-Cartan cosmology, Phys. Rev. D, (arXiv:2012.10213) **Vigneron Q.**, 2022b, On non-Euclidean Newtonian theories and their cosmological backreaction, CQG (arXiv:2201.02112) **Vigneron Q., Roukema B.**, 2022, *Gravitational potential in spherical topologies*, preprint (arXiv:2201.02112)

$$= \mathbb{E}^{3})$$
Spherical $(\tilde{\Sigma} = \mathbb{S}^{3})$ Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$
 $\Lambda g_{\mu\nu}$
, $\Lambda g_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$
 $\hat{R}_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$

Vigneron Q., 2022a, Is backreaction in cosmology a relativistic effect? On the need for an extension of Newton's theory to non-Euclidean topologies, Phys. Rev. D (arXiv:2109.10336)

Vigneron Q., 2021, 1+3 -Newton-Cartan system and Newton-Cartan cosmology, Phys. Rev. D, (arXiv:2012.10213) **Vigneron Q.**, 2022b, On non-Euclidean Newtonian theories and their cosmological backreaction, CQG (arXiv:2201.02112) **Vigneron Q., Roukema B.**, 2022, *Gravitational potential in spherical topologies*, preprint (arXiv:2201.02112)

$$= \mathbb{E}^{3})$$
Spherical $(\tilde{\Sigma} = \mathbb{S}^{3})$ Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$
 $\tilde{\Sigma} \rightarrow \Lambda g_{\mu\nu}$
 $R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$
 $\hat{R}_{\mu\nu} - 2Kb_{\mu\nu} = (\kappa\rho/2 - \Lambda)\tau_{\mu}\tau_{\nu}$
 \cdots

Vigneron Q., 2022a, Is backreaction in cosmology a relativistic effect? On the need for an extension of Newton's theory to non-Euclidean topologies, Phys. Rev. D (arXiv:2109.10336)

The Galilean limit: a limit of structures (from a Lorentzian structure to a Galilean structure) [Künzle (1976)].

We consider a family of Lorentzian structures $\{({}^{\lambda}g, {}^{\lambda}\Gamma{}^{\gamma}{}_{\alpha\beta})\}_{\lambda>0}$ on a 4-manifold \mathcal{M} such that:

$$\begin{cases} {}^{\lambda}g^{\alpha\beta} = h^{\alpha\beta} + \mathcal{O}(\lambda) \\ {}^{\lambda}g_{\alpha\beta} = -\frac{1}{\lambda}\tau_{\alpha}\tau_{\beta} + \mathcal{O}(1) \end{cases} \longrightarrow {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta} = \hat{\Gamma}^{\gamma}{}_{\alpha\beta}$$

 \mathscr{M} equipped with $({}^{\lambda}g, {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta}) \xrightarrow{c \to \infty} \mathscr{M}$ equipped with $(h, \tau, {}^{0}\Gamma^{\gamma}{}_{\alpha\beta})$

 $\operatorname{Apt}_{\lambda>0} = \left\{ \begin{array}{l} \operatorname{Apt}_{\lambda>0} \\ \operatorname{Apt}_{\lambda>0} \end{array} \right\}_{\lambda>0} \text{ on a 4-manifold } \mathcal{M} \text{ such that:}$

 $_{\alpha\beta} + \mathcal{O}(\lambda = 1/c^2)$

The Galilean limit: a limit of structures (from a Lorentzian structure to a Galilean structure) [Künzle (1976)].

We consider a family of Lorentzian structures $\{({}^{\lambda}g, {}^{\lambda}\Gamma{}^{\gamma}{}_{\alpha\beta})\}_{\lambda>0}$ on a 4-manifold \mathcal{M} such that:

$$\begin{cases} {}^{\lambda}g^{\alpha\beta} = h^{\alpha\beta} + \mathcal{O}(\lambda) \\ {}^{\lambda}g_{\alpha\beta} = -\frac{1}{\lambda}\tau_{\alpha}\tau_{\beta} + \mathcal{O}(1) \end{cases} \longrightarrow {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta} = \hat{\Gamma}^{\gamma}{}_{\alpha\beta}$$

 \mathscr{M} equipped with $({}^{\lambda}g, {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta}) \xrightarrow{c \to \infty} \mathscr{M}$ equipped with $(h, \tau, {}^{0}\Gamma^{\gamma}{}_{\alpha\beta})$

 $_{\alpha\beta} + \mathcal{O}(\lambda = 1/c^2)$

The Galilean limit: a limit of structures (from a Lorentzian structure to a Galilean structure) [Künzle (1976)].

We consider a family of Lorentzian structures $\{({}^{\lambda}g, {}^{\lambda}\Gamma{}^{\gamma}{}_{\alpha\beta})\}_{\lambda>0}$ on a 4-manifold \mathcal{M} such that:

$$\begin{cases} {}^{\lambda}g^{\alpha\beta} = h^{\alpha\beta} + \mathcal{O}(\lambda) \\ {}^{\lambda}g_{\alpha\beta} = -\frac{1}{\lambda}\tau_{\alpha}\tau_{\beta} + \mathcal{O}(1) \end{cases} \longrightarrow {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta} = \hat{\Gamma}^{\gamma}{}_{\alpha\beta}$$

 \mathscr{M} equipped with $({}^{\lambda}g, {}^{\lambda}\Gamma^{\gamma}{}_{\alpha\beta}) \xrightarrow{c \to \infty} \mathscr{M}$ equipped with $(h, \tau, {}^{0}\Gamma^{\gamma}{}_{\alpha\beta})$

Property: The differentiable manifold \mathcal{M} is unchanged, and so its topology (only the structure changes).

Intzian structure to a Galilean structure) [Künzle (1976)]. $_{\alpha\beta}$) $\Big\}_{\lambda>0}$ on a 4-manifold \mathcal{M} such that:

Non-relativistic limit of the Einstein equation:

$${}^{\lambda}_{R\alpha\beta} = \lambda^2 \kappa T^*_{\alpha\beta} + \lambda \Lambda g^{\lambda}_{\alpha\beta} \quad ; \quad \kappa = 8\pi G,$$

Non-relativistic limit of the Einstein equation:

$$\hat{R}_{\alpha\beta} = \lambda^2 \kappa T^*_{\alpha\beta} + \lambda \Lambda g_{\alpha\beta}^{\lambda} ; \quad \kappa = 8\pi G,$$

$$\downarrow \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2$$

(Newton-Cartan equation)

$$\hat{R}_{\mu\nu}^{\lambda} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2$$

Validity of the result:

- for vacuum,
- For matter fluid: (2,0)-energy tensor regular at the limit

it
$${}^{\lambda}T^{\mu\nu} = \mathcal{O}(1)$$
 and ${}^{\lambda}T_{\mu\nu} = \frac{1}{\lambda^2}\rho\tau_{\mu}\tau_{\nu} + \mathcal{O}(1/\lambda).$

Non-relativistic limit of the Einstein equation:

$$\hat{R}_{\alpha\beta} = \lambda^2 \kappa T^*_{\alpha\beta} + \lambda \Lambda g_{\alpha\beta}^{\lambda} \quad ; \quad \kappa = 8\pi G,$$

$$\int \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

(Newton-Cartan equation)

$$e^{2}\kappa T^{*}_{\alpha\beta} + \lambda \Lambda g^{\lambda}_{\alpha\beta} \quad ; \quad \kappa = 8\pi G,$$

$$\downarrow \lambda \to 0$$

$$R_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

Validity of the result:

- for vacuum,

For matter fluid: (2,0)-energy tensor regular at the limit ${}^{\lambda}T^{\mu\nu} = \mathcal{O}(1)$ and ${}^{\lambda}T_{\mu\nu} = \frac{1}{\lambda^2}\rho\tau_{\mu}\tau_{\nu} + \mathcal{O}(1/\lambda)$.

Non-relativistic limit of the Einstein equation:

$$\hat{R}_{\alpha\beta} = \lambda^2 \kappa T^*_{\alpha\beta} + \lambda \Lambda g_{\alpha\beta}^{\lambda} \quad ; \quad \kappa = 8\pi G,$$

$$\int \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

(Newton-Cartan equation)

$${}^{2}\kappa T^{*}{}_{\alpha\beta} + \lambda \Lambda \overset{\lambda}{g}{}_{\alpha\beta} \quad ; \quad \kappa = 8\pi G,$$

$$\downarrow \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa \rho - \Lambda) \tau_{\mu} \tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

Validity of the result:

- for vacuum,

Reminder: topology is **unchanged** by the limit!

For matter fluid: (2,0)-energy tensor regular at the limit ${}^{\lambda}T^{\mu\nu} = \mathcal{O}(1)$ and ${}^{\lambda}T_{\mu\nu} = \frac{1}{\lambda^2}\rho\tau_{\mu}\tau_{\nu} + \mathcal{O}(1/\lambda)$.

Non-relativistic limit of the Einstein equation:

$$\hat{R}_{\alpha\beta} = \lambda^{2} \kappa T^{*}_{\alpha\beta} + \lambda \Lambda g_{\alpha\beta}^{\lambda} ; \quad \kappa = 8\pi G,$$

$$\downarrow \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

(Newton-Cartan equation)

$${}^{2}\kappa T^{*}{}_{\alpha\beta} + \lambda \Lambda g^{\lambda}{}_{\alpha\beta} \quad ; \quad \kappa = 8\pi G,$$

$$\int \lambda \to 0$$

$$\hat{R}_{\mu\nu} = (\kappa\rho - \Lambda) \tau_{\mu}\tau_{\nu}/2 \quad \longrightarrow \qquad \mathcal{R}_{ij} = 0$$
(Euclidean topology)

Validity of the result:

- for vacuum,

Reminder: topology is **unchanged** by the limit!

A solution of the Einstein equation having a non-relativistic limit necessarily has a Euclidean spatial topology, and the limit is Newton's theory. [Vigneron (c) (2022), preprint: 2204.13980]

For matter fluid: (2,0)-energy tensor regular at the limit ${}^{\lambda}T^{\mu\nu} = \mathcal{O}(1)$ and ${}^{\lambda}T_{\mu\nu} = \frac{1}{\lambda^2}\rho\tau_{\mu}\tau_{\nu} + \mathcal{O}(1/\lambda)$.

$$= \mathbb{E}^{3})$$
Spherical $(\tilde{\Sigma} = \mathbb{S}^{3})$ Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$

$$\tilde{\Sigma} = \mathbb{R}^{3})$$
Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$

$$\tilde{\Sigma} = \mathbb{R}^{3})$$
Hyperbolic $(\tilde{\Sigma} = \mathbb{H}^{3})$

$$\tilde{\Sigma} = \mathbb{R}^{3}$$

$$R_{\mu\nu} = \kappa T_{\mu\nu}^{*} + \Lambda g_{\mu\nu}$$

$$\hat{R}_{\mu\nu} = \kappa T_{\mu\nu}^{*} + \Lambda g_{\mu\nu}$$

$$\hat{R}_{\mu\nu} - 2Kb_{\mu\nu} = (\kappa \rho/2 - \Lambda)\tau_{\mu}\tau_{\nu}$$

$$\cdots$$

$$= \mathbb{E}^{3})$$
Spherical ($\tilde{\Sigma} = \mathbb{S}^{3}$) Hyperbolic ($\tilde{\Sigma} = \mathbb{H}^{3}$)
 $-\Lambda g_{\mu\nu}$
 $R_{\mu\nu} = \kappa T^{*}_{\mu\nu} + \Lambda g_{\mu\nu}$
 $c \to \infty$
Not possible

Hypothesis: Requiring the relativistic equation describing our Universe to be compatible with the nonrelativistic regime in any topologies.

Hypothesis: Requiring the relativistic equation describing our Universe to be compatible with the nonrelativistic regime in any topologies.

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- Second derivative or less in the metric —> depends on an additional field
- Compatible with the non-Euclidean Newtonian theory

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- \blacktriangleright Second derivative or less in the metric -> depends on an additional field
- Compatible with the non-Euclidean Newtonian theory

A solution: Rosen's bi-metric theory [e.g. Rosen (1980), *General relativity with a background metric*] The theory is composed of:

- The **physical** Lorentzian metric $(g, {}^4\nabla)$ and its Riemann curvature tensor $R^{\mu}_{\alpha\beta\gamma}$
- A reference non-dynamical metric $(\bar{g}, {}^4\bar{\nabla})$ and its reference Riemann curvature tensor $\bar{R}^{\mu}_{\alpha\beta\gamma}$

<u>Modified Einstein's equation:</u>

 $R_{\mu\nu} - \bar{R}$

$$\mathbf{g}_{\mu\nu} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- \blacktriangleright Second derivative or less in the metric -> depends on an additional field
- Compatible with the non-Euclidean Newtonian theory

A solution: Rosen's bi-metric theory [e.g. Rosen (1980), *General relativity with a background metric*] The theory is composed of:

- The **physical** Lorentzian metric $(g, {}^4\nabla)$ and its Riemann curvature tensor $R^{\mu}_{\alpha\beta\gamma}$
- A reference non-dynamical metric $(\bar{g}, {}^4\bar{\nabla})$ and its reference Riemann curvature tensor $\bar{R}^{\mu}_{\alpha\beta\gamma}$

<u>Modified Einstein's equation:</u>

 $R_{\mu\nu} - \bar{R}$

Our choice of reference metric: the reference metric determines the spacetime topology

most symmetric Riemannian metric given the spacetime topology $\tilde{\mathcal{M}} = \mathbb{R} \times \tilde{\Sigma}$.

$$\bar{g}_{\mu\nu} = \begin{pmatrix} 1 & 0 \\ 0 & \bar{h}_{ij}(x^k) \end{pmatrix}$$
 where \bar{h}_{ij} = most symmetric

$$\mathbf{g}_{\mu\nu} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

- metric (homogeneous) on the spatial covering space Σ .

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- \blacktriangleright Second derivative or less in the metric -> depends on an additional field
- Compatible with the non-Euclidean Newtonian theory

A solution: Rosen's bi-metric theory [e.g. Rosen (1980), *General relativity with a background metric*] The theory is composed of:

- The **physical** Lorentzian metric $(g, {}^4\nabla)$ and its Riemann curvature tensor $R^{\mu}_{\alpha\beta\gamma}$
- A reference non-dynamical metric $(\bar{g}, {}^4\bar{\nabla})$ and its reference Riemann curvature tensor $\bar{R}^{\mu}_{\ \alpha\beta\gamma}$

<u>Modified Einstein's equation:</u>

 $R_{\mu\nu} - \bar{R}^{R}_{\mu\nu}$

$$\sum_{\nu}^{\times \tilde{\Sigma}} = \kappa T^*_{\mu\nu} + \Lambda g_{\mu\nu}$$

IJ

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- \blacktriangleright Second derivative or less in the metric -> depends on an additional field
- Compatible with the non-Euclidean Newtonian theory

A solution: Rosen's bi-metric theory [e.g. Rosen (1980), *General relativity with a background metric*] The theory is composed of:

- The **physical** Lorentzian metric $(g, {}^4\nabla)$ and its Riemann curvature tensor $R^{\mu}_{\alpha\beta\gamma}$
- A reference non-dynamical metric $(\bar{g}, {}^4\bar{\nabla})$ and its reference Riemann curvature tensor $\bar{R}^{\mu}_{\alpha\beta\gamma}$

<u>Modified Einstein's equation:</u>

$$R_{\mu\nu} - \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}} = \kappa T_{\mu\nu}^* + \Lambda g_{\mu\nu}$$

$$c \to \infty \qquad \text{with } \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}} \xrightarrow{c \to \infty} \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}}$$

$$\hat{R}_{\mu\nu} - 2Kb_{\mu\nu} = (\kappa\rho/2 - \Lambda)\tau_{\mu}\tau_{\nu} \qquad (\tilde{\Sigma} = \mathbb{S}^3 \text{ or } \mathbb{H}^3)$$

IJ

Requirements for $\mathcal{T}_{\mu\nu}$:

- Is zero for a Euclidean topology
- Sets the topological class ("topological term")
- \triangleright Second derivative or less in the metric -> depends on an additional field \checkmark
- Compatible with the non-Euclidean Newtonian theory

A solution: Rosen's bi-metric theory [e.g. Rosen (1980), *General relativity with a background metric*] The theory is composed of:

- The **physical** Lorentzian metric $(g, {}^4\nabla)$ and its Riemann curvature tensor $R^{\mu}_{\alpha\beta\gamma}$
- A reference non-dynamical metric $(\bar{g}, {}^4\bar{\nabla})$ and its reference Riemann curvature tensor $\bar{R}^{\mu}_{\alpha\beta\gamma}$

<u>Modified Einstein's equation:</u>

$$R_{\mu\nu} - \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}} = \kappa T_{\mu\nu}^* + \Lambda g_{\mu\nu}$$

$$c \to \infty \qquad \qquad \text{with } \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}} \xrightarrow{c \to \infty} \bar{R}_{\mu\nu}^{\mathbb{R} \times \tilde{\Sigma}}$$

$$\hat{R}_{\mu\nu} - 2Kb_{\mu\nu} = (\kappa\rho/2 - \Lambda)\tau_{\mu}\tau_{\nu} \qquad (\tilde{\Sigma} = \mathbb{S}^3 \text{ or } \mathbb{H}^3)$$

IJ

Hypothesis: Requiring the relativistic equation describing our Universe to be compatible with the nonrelativistic regime in any topologies.

Hypothesis: Requiring the relativistic equation describing our Universe to be compatible with the nonrelativistic regime in any topologies.

Vigneron Q., 2022, Non-relativistic regime and topology: consequences for the role of spatial curvature in cosmology, soon in preprint.

1. Exact homogeneous and isotropic solution:

$$\Lambda \text{CDM:} \begin{array}{l} \left\{ \begin{aligned} \Omega_{\neq K} + \Omega_{K} = 1, \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} \end{aligned} \right. \text{Bi-metric:} \begin{array}{l} \left\{ \begin{aligned} \Omega_{\neq K} = 1, & \forall \ \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} \end{aligned} \right. \end{array}$$

Vigneron Q., 2022, Non-relativistic regime and topology: consequences for the role of spatial curvature in cosmology, soon in preprint.

1. Exact homogeneous and isotropic solution:

$$\Lambda \text{CDM:} \quad \begin{cases} \Omega_{\neq K} + \Omega_{K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} & \text{Bi-metric:} \end{cases} \begin{cases} \Omega_{\neq K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} \end{cases}$$

2. Weak field limit: for $\Pi = 0 = \Pi_i$

$$(\Delta + 3K) \Psi = 4\pi G a^2 \delta \rho_{\Delta},$$

$$\Lambda \text{CDM:} \quad (\Delta + 2K) Q_i = -16\pi G a^2 q_i,$$

$$f_{ij}'' + 2\mathscr{H} f_{ij}' + (2K - \Delta) f_{ij} = 8\pi G a^2 \Pi_{ij},$$

....

$$\Delta \Psi = 4\pi G a^2 \delta \rho_{\Delta},$$

Bi-metric: $(\Delta - 2K) Q_i = -16\pi G a^2 q_i,$
 $f_{ij}'' + 2 \mathscr{H} f_{ij}' + (6K - \Delta) f_{ij} = 8\pi G a^2 \Pi_{ij},$
....

Vigneron Q., 2022, Non-relativistic regime and topology: consequences for the role of spatial curvature in cosmology, soon in preprint.

1. Exact homogeneous and isotropic solution:

$$\Lambda \text{CDM:} \quad \begin{cases} \Omega_{\neq K} + \Omega_{K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} & \text{Bi-metric:} \end{cases} \begin{cases} \Omega_{\neq K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} & q = \Omega_{\text{m}}/2 + \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} & q = \Omega_{\text{m}}/2 + \Omega_{\text{$$

2. Weak field limit: for $\Pi = 0 = \Pi_i$

$$(\Delta + 3K) \Psi = 4\pi Ga^2 \delta \rho_{\Delta}, \qquad \Delta \Psi = 4\pi Ga^2 \delta \rho_{\Delta},$$

$$\Lambda \text{CDM:} \quad (\Delta + 2K) Q_i = -16\pi Ga^2 q_i, \qquad \text{Bi-metric:} \quad (\Delta - 2K) Q_i = -16\pi Ga^2 q_i, \qquad f_{ij}'' + 2\mathscr{H} f_{ij}' + (2K - \Delta) f_{ij} = 8\pi Ga^2 \Pi_{ij}, \qquad f_{ij}'' + 2\mathscr{H} f_{ij}' + (6K - \Delta) f_{ij} = 8\pi Ga^2 \Pi_{ij}, \qquad \cdots$$

Reevaluation of the cosmological scenario from inflation to current time: -> change in the inferred value of Ω_{K} from cosmological data??

Vigneron Q., 2022, Non-relativistic regime and topology: consequences for the role of spatial curvature in cosmology, soon in preprint.

1. Exact homogeneous and isotropic solution:

$$\Lambda \text{CDM:} \begin{cases} \Omega_{\neq K} + \Omega_{K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} & \text{Bi-metric:} \begin{cases} \Omega_{\neq K} = 1, & \forall \Omega_{K} \\ q = \Omega_{\text{m}}/2 + \Omega_{\text{rad}} - \Omega_{\Lambda} \end{cases}$$

2. Weak field limit: for $\Pi = 0 = \Pi_i$

$$(\Delta + 3K) \Psi = 4\pi G a^2 \delta \rho_{\Delta}, \qquad \Delta \Psi = 4\pi G a^2 \delta \rho_{\Delta},$$

ACDM:
$$(\Delta + 2K) Q_i = -16\pi G a^2 q_i, \qquad \text{Bi-metric:} \quad (\Delta - 2K) Q_i = -16\pi G a^2 q_i, \qquad f_{ij}'' + 2\mathscr{H} f_{ij}' + (2K - \Delta) f_{ij} = 8\pi G a^2 \Pi_{ij}, \qquad f_{ij}'' + 2\mathscr{H} f_{ij}' + (6K - \Delta) f_{ij} = 8\pi G a^2 \Pi_{ij}, \qquad \cdots$$

Reevaluation of the cosmological scenario from inflation to current time:

-> change in the inferred value of Ω_{K} from cosmological data??

Strengths of this cosmological model:

1. Origin of the modifications not related to cosmology or tensions of ΛCDM .

2. Has the same number of free-parameters than the Λ CDM model.

