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Modifying gravity

The simplest modification of the Einstein-Hilbert action is...
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Mathematical framework: (co)frames

e Local coordinates {x"} at P.

e They naturally define a basis
vectors e, = 0/0x" = 0,

e The basis 1-forms " = dx* are
dual to the e,.

e In 4D, a linear combination of
the 6* gives us an arbitrary
frame, tetrad, or vierbein
0 = 05,dx"

e Completeness relation
0%(ep) = 92, orthonormality

condition 7,5, = gu.el'ey that
defines the metric tensor

Euw = TIabQZ 95.




Mathematical framework: linear connection

The connection ['“,,,, defines the parallel transport of a vector along a
curve in a manifold. Generically it has three parts:
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It is related with the spin connection w?;, by the tetrad postulate

8ﬂeau + Wabuaby - rp/ﬂ/eap =0 (1)



Metric teleparallel framework

e A teleparallel framework is the one for which the linear connection
has vanishing Riemann curvature R*,,3 = 0.

e In this setup we can still fix either the non-metricity tensor, or the
torsion tensor, to zero. In the former case, the connection can be
written in term of Lorentz matrices as

wlpy = — (A_l)c bOuN?. (2)
e Consequently, the torsion tensor is

T2, =007, —8,0° , +w*,,0°, —w 0%, (3)
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e A useful object for later is the torsion scalar T:
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The teleparallel equivalent of general relativity

The action for the teleparallel equivalent of general relativity is [Aldrovandi,
Pereira (2013)]

1
STEGR = */d‘lx 0T,
2K
contains T, which satisfies the identity
0T = —60R +0,(0T",*).

Here R depends exclusively on the metric, which is invariant under local
Lorentz transformations of the tetrad

07 — 07 = N7 (x)6°.

This is not true for 0,,(0T",#), which is a harmless boundary term.
Then, it is said that TEGR is a Lorentz pseudo-invariant theory.
TEGR encompasses the same degrees of freedom than GR

[Ferraro, Guzman (2016) arXiv: 1609.06766].



Symmetric teleparallel gravity

e After setting a vanishing torsion and curvature in the connection we

obtain Ox®
o b
M = W@,ﬁufﬁ, (4)
where £%(x*) are a set of invertible functions depending on the

coordinates, and ‘g’g: is the inverse of the corresponding Jacobian.

e Any coordinates affinely related to £€* = x® make the connection
I, = 0. These coordinates are called the so-called coincident
gauge. The non-metricity is then trivial

Q(X;UJ = Oa8uv- (5)



Symmetric teleparallel gravity

e We define the disformation tensor
(e} 1 « «
L pr — EQ pr Q(/J.l/) ) (6)

measures the separation of the symmetric part of the full connection
from the Levi-Civita one.
e The non-metricity conjugate P¢,,, is defined as
a i « 1l « Ao il «@
P ny — _EL v + Z(Q - Q )g;u/ - 15(MQU), (7)
where Q, = g"” Qqpv and Q. = g" Quav are the two independent
traces of the non-metricity tensor.

e The non-metricity scalar
Q = _Qa;wpauy> (8)

and written as a quadratic combination of non-metricity, it can also
read as

1 1 1 1 =
Q - 7ZQ(¥[LV Qoz/u/ + EQa/w Quua + ZQ(}/ Qa - EQ()/ Qa- (9)



The geometrical trinity of gravity
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[adapted from Beltran-Jimenez, Heisenberg, Koivisto (2019)]



Why curvature?

e Curvature is not the unique way of representing the observed
gravitational phenomena. There are at least two equivalent
representations: TEGR and STEGR

e If we think that 7(R) is the simplest modification of GR, then f(T)
and f(Q) are on equal footing, using the simplicity argument.
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Motivations for Hamiltonian formalism

e Allows a non-ambiguous identification of gauge symmetries and
counting of physical degrees of freedom

e Crucial in approaches to canonical quantum gravity

e Assessing the well-posedness of the Cauchy problem, therefore the
viability of any theory

e Theoretical basis for numerical modified general relativity
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Dirac algorithm part 1

H,=H+u"é,

primary Hamiltonian

¢m(q,p) =0

m=1,....M

primary constraints

{qn’ pn’} = (ssl

Poisson brackets
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Dirac algorithm part 2

full set of
constraints

oi(q,p) =0

j=1. M+K=J]

(11)’71 = {Hp-(sbm} ; 0

end when
Nno new

¢ appear @k(Q-p) =0
k=M+1,..M+K

secondary constraints

b =0

first class
constraints Ya
{’)/(1-, O,} ~ 0

generators
of gauge
transform.

Xa second class
if not first class
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Nonlinear TEGR: f(T) gravity

The f(T) gravity action is the simplest nonlinear generalization of the
TEGR action, given by [Ferraro, Fiorini (2006) arXiv:gr-qc/0610067]

S= /d4x9f (10)

Denoting fr = d']I‘ and frr = d’JI‘? the equations of motion can be
conveniently written as
1
—kOX = 2frr(T)S5,"9,T — féif(’}l‘) (11)
+ 2e05 fr(T)2,[0e] S,*] + 2T”M/\5p“"fr(?1‘)

where & is the Lorentz-covariant derivative, in particular
D€ = 0,eJ —wb,,ef. In the Weitzenbdck gauge it coincides with the
usual partial derivative.

In the covariant form, equations read:

(0) 1
:‘Q@uy = fT(T) GI“/ —‘1-2)(7'7'(71‘)5“1,&(9&11‘ + 5 [f(T) — fT(T)T] Buv- (12)
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f(T) gravity

The f(T) gravity action

1 4
G= Z/d x OF(T) (13)

has a Jordan-frame representation

5= / d*x B4T — V(9) (14)

and an “Einstein-frame” -like one

1 ) L1
5= / d*x E[T +ed, (ET") = 50,00" — U(¥)]

Hamiltonian formulation has only been attempted in the Jordan-frame
like.
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A digression on “covariance”

e Teleparallel theories of gravity built in terms of the torsion tensor are
invariant under the simultaneous transformation (covariant
approach)

05 — N0, (15)
Wiy, —> Wiy = /\acwcd#(/\*l)db — 0N (N1 (16)
(w?py, vanishes both R?;,,,, and Qu,.). These are represented by
primary first class constraints, therefore are pure gauge.

e On top of it, an alternative Lorentz transformations only on the
tetrad (pure-tetrad approach) appears as additional symmetry in
TEGR

05 — N8),  wp, =0. (17)

e In f(T) not all A's produce tetrads solving the e.o.m. (unless they
are remnant symmetries). This is the kind of Lorentz symmetry that
is lost in f(T) gravity. It is not restored by introducing the previous
“covariant approach”. [Golovnev, Guzman 2110.11273]
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Constraints in f(T) gravity

The constraint structure in the Jordan-frame like representation of f(T)
gravity consists of

e 17 pairs of canonical variables (67, M%) plus (¢, 7)
e Four primary constraints N9 ~ 0

e Six extra primary constraints
Cob = 2778[,,”2]9? + 49¢8,~9jc(e[°be + e[bej e’ 5 €L Ho(18)
e One (secondary) Hamiltonian constraint

_V0 (i 1 o) Ve, VT R
G= 20 (77 mj — 572 ) = LTOT+ YIv(g) - oy, (19)

and three (secondary) momenta constraints C; ~ 0

e An extra secondary constraint
x = (M) g T — N0 g in T k) e 14 01 pDppO1p = 0
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Theoretical aspects of interest

The Hamiltonian analysis of f(T) presents several theoretical challenges
as:

e Shifted momenta due to modified pseudo-invariance, modified
primary constraints

e Bifurcations on Dirac algorithm

e It has been found [Li, Miao, Miao, 1105.5934], [Ferraro, Guzman 1810.07171
(wrongly in 1802.02130)], [Blagojevic, Nester, 2006.15303] that

{Cab7 Ccd} = —Tac Gpd + Tbd GR Tbe Gaa + Nad Gpe (20)

with
Goa = 20(0,05 — 04,69)0;¢ (21)

The (non)vanishing of the last expression is related with the
remnant symmetries of f(T) [Ferraro, Fiorini 1412.3424 ].
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f(Q) gravity Lagrangian

e f(Q) gravity Lagrangian can be conveniently rewritten as

5= [ xR0 +e®+ 0,0 -], (@)

where two auxiliary scalar fields x and ¢ have been introduced.

e Integrating out x from its eom f’(x) = ¢ yields
1
5= [dxVTELR- U@ -2s]. ()

where U(p) = [px — f]x:x(so)

e To recover an Einstein frame-like Lagrangian, a conformal
transformation g, = %qw is performed, also it is introduced a field
redefinition o = €%, and it is necessary to conformally transform
the current J*
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f(Q) gravity

With all this, the Einstein frame representation of f(Q) gravity is

= i/d“X\ﬁq [R(q) — 2(¢* ¢"* — q**¢"")0a0V 3Gy
+6(09)? - ()]

(24)

Up to now the gauge has not been fixed, however in the coincident gauge

the action looks like

Sox [ dxay (RG@) + 606 + 06) ~2(a7 0" — 44" )05

It features a diffeo-breaking scalar field coupled to first order derivatives
of the metric. [Beltran-Jimenez and Koivisto, 2104.05566 (2021)]
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3+1 Lagrangian

We perform ADM split of the conformally transformed metric g, as

0? + BBy 6] quu:[—% B] (25)

B & -EF

quv =

leading to the following Lagrangian

. 23i o~
Lf()CxKUK”—(K) +OR ¢2 ﬂ¢8¢+ b
2y 2 1 . . _
1k =498 — = 1k e 7(2ﬁ’v’k—6kv”—6”y”‘) ik
T
86, 9B, i

(26)
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Canonical momenta

From the previous Lagrangian it is easily obtained the canonical momenta

oL
oo _ 9t _
™ ="
. 2
no'zgg 2V iy
ﬂiji(’)ay =~ Kk i _ u+2 Qg,%( 28k~ — (f,yi)k)
ij

b _Tﬁw — Bi0i¢) — 47K + %@Bk-
(27)

The kinetic mixings 77(¢) and 7?(K!) nontrivialize the computation of

the Hamiltonian...
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Primary constraints

e Since 7/ and 7® are not fully independent, we obtain an extra
primary constraint. Therefore, f(Q) gravity is endowed with a set of
five primary constraints

C®=n%~0

. . 2 "
C =%+ ﬁ’yuajaﬁ ~0

«

.. ¢
C? =iy, + % a ?(25"5@ +018) ~ 0
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Constraint algebra (preliminary...)

{c°,Cc% =0

{C°(x), C'(n)} <1707

{C°(), C2(y)} o< 28406 + Oy B

{C'x), )} =0

{C'(x), C(y)} <7906

{C?(x), €} o BH(n)OR3(x, ) = B* ()0 (x, y)
The f(Q) Hamiltonian can be written purely in terms the 77, 7%
depends on them via the 5th primary constraint. Next step is to finish

Dirac’s algorithm, identify first and second class constraints, and
compute dof and physical interpretation.
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Comparison with previous works

e D’Ambrosio, Garg, Heisenberg, Zentarra (2020): It is hypothetized
that in f(Q) there should be only four primary constraints (like GR).
However, breaking of diffeomorphism invariance strongly suggests a
larger number.

e Hu, Katsuragawa, Qiu (2022): The 3+1 action has mixing of kinetic
terms different than us, producing qualitatively different primary
constraints.
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Conclusions

e Teleparallel geometric frameworks, and gravity theories based on it,
in particular TEGR and STEGR, are legitimate starting points for
building modifications to gravity.

e The simplest nonlinear modifications, f(T) and f(Q) gravity, present

genuine differences regarding their f(R) counterpart.

e Full Hamiltonian analysis is necessary for non ambiguous
identification of degrees of freedom, generators of gauge
transformations, etc. of a theory.

e Special care must be given to their constraint structure. Nonlinear
constraint effect, strong coupling, and unusual mathematical
anomalies appear, that are theoretically challenging.
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