

H

ML solutions for cluster reconstruction in planar calorimeters WMLQ 2022, Warsaw

by Michał Mazurek

on September 13, 2022

Introduction

- will focus on high-energy physics (HEP) experiments at CERN,
- HEP experiments in a nutshell:
 - 🛢 a lot of data,
 - 兰 data analysis,
 - 🛹 new discovery,
- data acquisition difficult:
 - high throughput,
 - Iimited computing resources,

Solution Machine Learning to help! But let's put things into context first...

CERN Accelerator Complex

• Large Hadron Collider (LHC)

- the largest particle collider in the world
- 27 kilometers in circumference
- registers mainly proton-proton collisions, sometimes heavy-ion collisions
- first collisions in 2010,
- currently during Run 3 of data taking,
- 13.6 TeV center-of-mass collision energy,
- 4 large particle detectors: ALICE, ATLAS, CMS, LHCb

Large Hadron Collider (LHC)

- the largest particle collider in the world
- 27 kilometers in circumference
- registers mainly proton-proton collisions, sometimes heavy-ion collisions
- first collisions in 2010,
- currently during Run 3 of data taking,
- 13.6 TeV center-of-mass collision energy,
- 4 large particle detectors: ALICE, ATLAS, CMS, LHCb

Let's see what's inside! LHCb for example...

Anatomy of HEP detectors

- large magnet provides a strong magnetic field,
- tracking stations provide track coordinates used to measure the momentum of particles,
- RICH (Rich Imaging Cherenkov) sub-detectors determine particle identities,
- electromagnetic and hadronic calorimeters measure the amount of energy deposited,
- muons get identified in muon stations

- Data objects in HEP
- ♣ Low-level objects, produced by
 - the detector,
 - Monte Carlo simulations,

- High-level objects, inferred in
 - reconstruction software,
 - 🖸 data analysis,

Clusters are specific objects created in calorimeters...

WMLQ 2022, Warsaw

Electromagnetic calorimeter (ECAL) in LHCb

- $\label{eq:constraint} \mbox{ designed to measure the energy of } {\rm e}^{\pm} \mbox{ and } \gamma,$
- captures showers of secondary particles,
- Sandwich-like structure,
- 66 alternating lead and scintillator layers plus plastic and steel plates,
- consist of 3 modules with different granularity

ECAL stack of scintillator and lead plates

WMLQ 2022, Warsaw

Example of a shower produced by a photon in ECAL (side view) [8/22]

Credit: Stack, Granularity &

Cluster reconstruction in LHCb

What really happens

What is observed

Cellular Automaton:

- find local maxima,
- tags cells in the neighbourhood,
- resolve overlapping cells,

• Graph clustering¹:

- vertices: digits
- edges: digit to the source,
- optimization from graph theory,
- improved computation complexity,

¹ paper by N. Valls et al. will be published soon M. Mazurek

0.3	0.6	0.2			0.3	0.6	0.2			
1.3	4.8	1.2	0.7	0.2	1.3	4.8	1,2	0.7	1.2	
	0.9		3.1	0.7		0.9		3.1	0.7	

Other LHC experiments and their calorimeters

Credit: ATLAS, CMS & ALICE

M. Mazurek

Selected machine learning topics

• Framework: graph neural networks

- hits as a point cloud,
- construct a graph by drawing edges between k nearest neighbour of each hit,
- perform 'message passing' to allow information flow along graph edges, comparison for ECAL and the new HGCAL,

S Method: Object condensation

- assumption: every single entity can represent features of the whole object when accumulated,
- loss: attractive and repulsive terms,
- adaptable to any input: images, point clouds, etc.

M Mazurek

Graph neural networks in planar calorimeters

EHCb-inspired toy model.

2 main components:

- GNN block, see digits of a planar calorimeter as elements of a point cloud to tackle the problem of irregular geometry,
- map the output to a CNN-based framework to take into account deposits within the receptive field & optimize for inference speed,

WML0 2022 Warsaw

B. Delanev, PhD thesis

▶ Going convolutional: calorimeter as an image M. Mazurek et al., 4th IML workshop

Exploring convolutional frameworks

- YOLO = You Only Look Once,
- state-of-the-art, real-time framework.
- mixed classification and regression problem,
- introduces its own, regular grid,
- the backbone is a CNN that produces the feature map,
 the head is responsible for parsing the feature map into the bounding box candidates,
- Ioss is a linear combination of MSE and CE losses of the bounding box attributes,

Adapting YOLO to our needs

M. Mazurek et al., 4th IML workshop

Preliminary results

Improving the data

ML demanding

- difficult conditions,
- complex geometry,
- high throughput and precision required,
- a lot of hyperparameters to tweak!

Need for more data

- required data for ML studies (training & inference) is not always present,
- the output is optimized for physics reconstruction & analysis,

What if we had more control over the simulations?

[17/22]

Credit: LHCB-TDR-017

Getting more from simulations

Gaussino

- new core experiment-independent simulation framework,
- complete generation & detector transport phase,
- created by extracting experiment-independent components from LHCb simulation framework,
- ideal test bed for new developments,

c see more in Gaussino's documentation

- Incremental approach
- Generic toy model
- Toy model in the experiment's environment
- Real detector

Adding more volumes

- An abstract, external detector can be used as a collector of the required information at any position in the detector.
- A built-in mechanism can take care of potential volume overlaps by placing extra volumes in parallel geometries.

Abstract geometry

M. Mazurek

Examples of custom datasets

LHCB-FIGURE-2021-004

external plane (incident particles info) % ECAL hits

M. Mazurek

• Complete implementation plan

Toy model part

- check if the framework is feasible,
- tweak the hyperparameters of the network on a simplified geometry description in Gaussino,

Real detector part

- seamlessly move to the real calorimeter geometry,
- investigate the effect on performance,
- compare with the current reconstruction algorithms (using the same comparison tools!),

Extension part

• see how the additional information from the network can be used to improve the reconstruction algorithms (e.g. classification of particles),

Summary & Future outlook

- introduced the concept of cluster reconstruction in calorimeters.
- presented some selected solutions in HEP experiments,
- graph & convolutional neural networks in planar calorimeters possible, but difficult!
- showed how recent results in the simulation framework can help to improve the training and understanding of the network,
- complete implementation plan in place!

Thank you!