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„Astronomy related” 
Nobel prizes -  

 2020 – black holes
 2019 – physical cosmology and exoplanets
 2017 – gravitational waves
 2015 – neutrino oscillations
 2011 – accelerating expansion of the Universe
 ....
 2006 – microwave background radiation
 2002 – X-ray astrophysics
 1992 – pulsar-based test of general relativity 
 1936-1983: only 5 „astrophysical” Nobel prizes 



  

Changes in the data domain: 
Milky Way

● ~5,000 stars visible to the naked eye
● ~1004 stars in the Tycho Brahe/Johannes 

Kepler catalog (1627)
● 1993: Hipparcos Catalogue: 118 218 stars
● 2020: Gaia EDR3: 1,811,709,771 = 10^9 

(mostly) stars
● (total in Milky Way: 100 thousand million = 

10^11 stars) 



  

Changes in the data domain: 
extragalactic world

● ~3 galaxies visible to the naked eye
● ~110 „nebulae” (out of which 40 galaxies): Messier catalog (1774)
● 1888-1908: New General Catalogue of Nebulae and Clusters of Stars 

(NGC): 7,840 (+5,386)
● ~1990: the APM galaxy catalog: 14,681 (nearby) galaxies
● ~1990: CfA2 Redshift Survey: 18,000 (nearby) galaxies
● 1995: CFRS – deep surver of 700 galaxies
● ~2000: SDSS - ~150,000 (nearby) galaxies and quasars; 
● mid-2000: deep surveys -> ~a few 10,000 galaxies
● mid-2010: deep surveys -> ~100,000 galaxies; local surveys (SDSS and 

cont.): milion(s) of galaxies
● near future: DESI with 8mln+ galaxies, LSST with one SDSS per 3 nights...
● estimate: 125 billion (1.25×10^11) galaxies in the observable universe



  

 (Astronomically) Big Data
Wide-field Infrared Survey Explorer (WISE)

 All sky in the 
infrared

 over 747 mln 
sources

(15 PB of data: 
tables and 
images)

(http://wise2.ipac.caltech.edu/docs/release/allsky/)



  

 (Astronomically) Big Data of near 
future: Vera Rubin Observatory 

• Large Survey of Space and Time (LSST)
• Deep and wide survey in time domain
• mirror 8.4-m; 3200 megapixel camera

• 37 bln stars and galaxies
20B galaxies

17B resolved stars
6M orbits of solar system bodies

Average number of alerts per night: about 10 million
• 10-years long sky survey

     • 15-30 TB of data 
(all SDSS) per night

• After 10 years: 
~200 PB of data 



  

Machine learning for (mostly) 
extragalactic science

● Huge and soon much larger „big data” in the era of „precision 
cosmology”

● Goal(s): 
– source classification
– source identification 
– reconstruction of properties
– novelty search

● Supervised → when we know a priori what sources we 
expect to find and we can use some datasets for training

→ classification (for separate groups) or

→ regression (for smooth transition/source properties)

● Unsupervised (+semi-supervised) → clustering of sources 
into previously unknown and unexpected classes



  

Machine learning for astronomy – 
challenges

● Problems and challenges
– Extrapolation (small and biased training samples)
– Physical interpretability (do trends we see really mean 

something? No to black box approach – we would like 
to learn new physics)

– Reproducibility
– Resources



  

Machine learning for astronomy – 
challenges

● Problems and challenges
- observation vs experiment – we can see only as 
much as there is to see in the Universe



  

Machine learning for astronomy – 
challenges

● Problems and challenges
- (relatively) small parameter space

● photometry + imaging (in different spectral 
ranges)

● spectra

● time variability
● polarization

„Multimessenger time 

domain astronomy”



  

Machine learning for astronomy – 
challenges

● Problems and challenges
- (relatively) small parameter space

– alternatively: a larger space 

of derived parameters (stellar mass,

age, metalicity, star formation rate...) 

but at a risk of model dependence 

and resultant biases



  

Machine learning for astronomy – 
challenges

● Problems and challenges
- transfer learning

CFHT (ground-based)

JWST (space)

llustris (simulation)



  

Machine learning for astronomy – 
challenges

● Problems and challenges: data representability

what we would like to see what we usually do see

HST (M31)



  

Machine learning for astronomy – 
challenges

● Problems and challenges: data representability

JWST

● training based on brighter objects to generalize over faint 
ones 

● different distributions of properties of training and 
generalisation samples

● fainter objects are
– intrinsically fainter – having different physical properties
– more distant –> if in space, also in time – representing 

different evolutionary stages
– more distant -> different rest frame

Narendra et al. 2022



  

Machine learning for astronomy – 
challenges

● Problems and challenges: model interpretability
– I get a model but does it have any physical meaning? 
– But also: maybe I can find new physical information in 

the ML-based model?



  

Some examples of what ML can 
actually be used for (and how 

challenges can be met)



  

Looking for unknowns 
(novelty search)
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Source classification of very large
data: Wide-field Infrared Survey

Explorer (WISE)

● All-Sky survey in IR 

● Detected over 747 mln sources

(15 PB of data; tables + images)

● Publicly available (position, 
photometry in 4 bands (3.6-22 
um)

● Low angular resolution (~6”)

● No redshift information so far (i.e. 
- no clear identification for all!)

● The largest single astronomical 
catalog so far – training ground 
for search for unknowns

 (http://wise2.ipac.caltech.edu/docs/release/allsky/)

Solarz et al. 2017



  

● „Traditional” approach to 
source classification: 
color-color diagrams or 
similar

● Truely „novel” sources 
should deviate in 
properties but they may 
mimic the behaviour of 
known sources, especially 
when only few properties 
are taken into account

→ Search in 
multidimentional (as much 
as data permit, with 
feature selection on the 
way...) parameter space

Credit: Wright+10

Search for 
unknown among 

the knowns 
Solarz et al. 2017



  

WISE: novel source detection
Solarz et al. 2017

Training set (what we expect): 
AllWISE x SDSS (α,δ) with (secure) spectro-z 



  

WISE: search for for unknown 
unknowns

Solarz et al. 2017
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Novelty detection with One-Class 
Support Vector Machines

● Create one ‘known’ class (mix of AllWISE x SDSS galaxies, stars, QSOs)

● Maps input data to a higher D parameter space (based on Kernel methods)

● Hypersurface hugging the expected sources

● Anything with ‘unknown’ patterns falls outside the hypersurface => novelties

Solarz et al. 2017
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Results:

~650,000 
anomalous 

sources

What are they?

                         Solarz et al. 2017
Solarz et al. 2017



  

AGN candidates?
● 30,000 sources (Galactic Plane: mostly blends)

● 76%  undetected at other wavelengths!

● ~7 000 objects with SDSS photometry (no spectro-z)

– Peculiar (dusty)QSOs 

– Low-z very dusty galaxies

– Very dusty Galactic objects

 

                         Solarz et al. 2017
Obscured?Unobscured? Solarz et al. 2017

Solarz et al. 2020



  

(Previously) unknown classes 
inside known data and long history 

of interpretability



Goal: 100 000 spectra 
of  galaxies 
at 0.5<z<1.2
2 fields on the sky, 24 deg^2 

Large ESO Programme, 2008-2016

Guzzo et al. 2014, 2017, Scodeggio et al. 2018



  

● Method: unsupervised - FEM - Fisher 
Expectation-Maximization (Bouveyron & 
Brunet 2011); 

● Parameter space: of 12 rest-frame optical 
magnitudes and a spectroscopic redshift

Siudek et al. 2018
Turner et al. 2021

11 well separated classes of 
galaxies at 0.5<z<1 
(+ a 12th class of outliers), forming 
the sequence of: 3, 3, and 5 
subclasses of early, intermediate 
and late types, respectively. 
well reproduced in SDSS (local 
Universe)

Beyond bimodality: 
how many galaxy populations 
can be blindly selected at z~1? 

Schavinski et al. 2016



  

Siudek et al. 2018

How many galaxy populations 
can be blindly selected at z~1? 
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Does this 11 class division reflect actual physical 
information?  
→ Traces of different galaxy evolutionary paths seen 
in multi-color space?
→See what happens when quantities not related to 
classification are introduced (environment!)...

For blue galaxy populations: the downsizing trend is 
mostly driven by only one (admittedly, the largest) 
subpopulation (consistent with mass-driven passive 
evolution)
while the fractions of other blue SF galaxies are much less 
mass/environment-dependent

For intermediate and 
dusty populations the 
environmental trends are 
reversed depending on 
stellar mass: low mass 
ones behave like passive 
galaxies; high mass ones - 
like active galaxies

- a variety of galaxy populations is 
physical, and indicates a variety of 
their evolutionary paths

(Siudek et al. 2022)



  

Does this 11 class division reflect actual physical 
information?  
→ Traces of different galaxy evolutionary paths seen 
in multi-color space?
→See what happens when quantities not related to 
classification are introduced (environment!)...

...the reddest red class: small and 
size does not depend on 
environment (independently on 
stellar mass): a product of early 
fast quenching (while the other 
two might have grown also 
through mergers) 

- a variety of galaxy populations is 
physical, and indicates a variety of 
their evolutionary paths

(Siudek et al. 2022)

a catalog of 77 „red nuggets” (relic 
galaxies which never merged in their 
lives) at z~0.7 (Lisiecki et al. 2022)

Mrk12 16 – not one of ours 
but as ours would look 
„today”



  

Merger in the background
or a history 

of unexpected interpretability
(talk to Luis Suelves)



  

How to automatically find 
merging galaxies?

→ People very often use Deep Learning (with 
moderate success)
→Concept: see if we can do any good (but 
faster/easier/more interpretable) with photometry 
only (fluxes, colours, errors)



  

How to automatically find 
merging galaxies?

→ What is a magical ingredient of fiber errors?

→ We do not need any ML do get ~92% accuracy – 
it was just about finding the key data
→Physics: merging galaxies (today) do not differ 
that much from other galaxies – what makes them 
different are their surroundings (tidal tails etc.)
→new generation of DL for background only (never 
forget the power of differential analysis...)



  

What is an AGN and how to find (and 
measure) them

● Challenges: different types and different diagnostics
● Big Data, big search: need for large and varied 

training samples! 
● AGN properties, including photo-zs are tricky to 

recover even using „traditional” techniques
● Bright but training data available for low z/the bright 

end of LF: extrapolation problem.

● However, if we have a big training sample and are 
smart to use ML methods, we can get a reliable 
AGN sample and its properties (KiDS: Nakoneczny 
et al. 2019, Nakoneczny et al. 2021)
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Nakoneczny et al. 2019

Nakoneczny et al. 2021

45 million objects of the KiDS 
photometric data limited to 9-
band detections 

-> 158,000 quasar candidates 
in the safe inference subset (r < 
22) and an additional 185,000 
candidates in the reliable 
extrapolation regime (22 < r < 
23.5)



  

KiDS quasar candidates: how to make sure 
they are what we think they are

ID: Xboost
photo-zs: ANN

Nakoneczny et al. 2019

Nakoneczny et al. 2021
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Summary

● Extragalactic Big Data
– now more and more necessary to introduce new automated methods 

to study new large data, especially those coming soon (e.g. LSST)

● Problems and challenges
– Extrapolation (small and biased training samples; limited parameter 

spaces)
– Physical interpretability (do trends we see really mean 

something?)
– Reproducibility
– Resources
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