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CPU      vs      GPU      vs      FPGA
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 GPU

 Single Instruction
Multiple Data

 Fixed instruction set

 High clock freq.

 Memory access

 Accelerates CPU

 FPGA

 Flexible architecture

 Massive parallelism

 Streamlined processing

 Low clock freq.

 Instant memory access

 Standalone platforms

 CPU

 Single Instruction Single 
Data per core

 Fixed instruction set

 Multiple cores

 High clock freq.

 Operating system



Instead of adapting the program to a given 
architecture

Let’s design the architecture that performs the task 
in the most efficient way

Different approach



What are FPGAs

• Field Programmable Gate Arrays
• Devices for processing digital data streams

• Adaptable computing resources

• Reconfigurable at any time

www.electronicdesign.com

Arrays of Configurable Logic Blocks Basic Configurable Logic Block

R. Kastner, J. Matai, S. Neuendorffer „Parallel Programming for FPGAs”



What are FPGAs

• Much more than just CLBs:
• Memory blocks
• DSP block (hard multipliers)
• Multigigabit transceivers
• Clock managers
• Hard protocols and codecs
• Ext. memory controllers
• ADC/DAC

• Complete System-On-Chip:
• PowerPC/ARM
• Ext. Memory controllers
• Multiple I/O controllers
• Fast interconnect

Xilinx.comXilinx Zynq MPSoC - infrastructure



Natural parallelism and streamlined processing
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Neural Networks

• Massive parallelization
• Accelerated computing

time

• Deterministic Latency
• Exact time of the result

in a processing pipeline

• Optimized data types
• Better FLOPs/Watt ratio



Flexible data types



Device selection

• Low-end devices -> cheap, small form-factor, ultra-low power
• 3.7k LUT, 5 BRAM, 10 DSP

• High-end devices -> ultra expensive, large form-factor, low power
• 4M LUT, 3.7k BRAM + 1.2k URAM, 12.2k DSP, 128 MGT (32 Gbps)

• Everything in between

• Edge
• Ready to use, standalone platforms, large selection of add-on cards

• Cloud
• Accelerator cards, host – PCIe card



How to use these resources?

• Hardware Description Languages: Verilog/VHDL
• Control over each flip-flop and clock cycle

• Difficult, time consuming development and 
debugging cycles

• High-level tools
• C++ to HDL converters (High-Level Synthesis)

• Loss of performance, gain in solution-to-market

• Accelerated libraries

• Complete system builders

• However, HDL always in the end HDL

FPGA 
Compiler

Block design

IPsC/C++

HLS



Neural Networks on FPGAs

• Full model
• Pros:

• Fits entire model into 
programmable resources

• No supervisor
• Direct processing
• Lowest, fixed latency
• Any data type
• No ext. memory req.

• Cons:
• High resource 

consumption
• Limited memory 

capacity
• Limited types of layers

• Decomposed model
• Pros:

• Any model can be 
compiled

• High-level model 
optimizers

• Moderate resource 
consumption

• Subset of data types 
support

• Cons:
• Requires supervisor
• Requires ext. memory 
• Subset of data types 

support



Full model

• Decomposition of the entire model into series of matrix operations

• Construction of pipelined sequence of operation blocks (layers)
• Highest throughput, lowest latency

• Implementation of operations on LUT and DSP, weights stored in FF
• Very high resource consumption, resources limits



Full model

• Integration of HDL logic generation with Python
• NN model converted to C++ code

• High Level Synthesis used to convert C++ into HDL

• Full control over data types

• Moderate control over resource consumption vs latency

Python C++ Bitstream
J. Duarte et al., “Fast inference of deep neural
networks in FPGAs for particle physics”, JINST 13 
P07027 (2018), arXiv:1804.06913.

import hls4ml

config= hls4ml.utils.fetch_example_model('KERAS_3layer.json') 

hls_model = hls4ml.converters.keras_to_hls(config)

hls_model.build()



Full model

• Application in hardware trigger for CMS experiment in CERN
• Trigger: fast feature extraction for decision making
• Hardware level: sustain incoming 40 MHz collision rate, true real-time processing

• CPU/GPU not viable: fast but not real-time
• FPGA over ASIC: reprogrammability

1GHz -> 1 ns

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf



Decomposed model

• Model decomposition into a set of sequential 
instructions dedicated processor

• Processor – Deep Learning Processing Unit (DPU)
• Configurable entity to instantiate in programmable resources
• Instruction set optimized for NN inference
• Instructions and weights stored in external memory

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Card-DPUCAHX8H

Requires supervisor!
Breaks true real-time chain

Host processor:
• CPU on PCIe based platforms
• ARM cores in SoC platforms



Decomposed model

• AMD/Xilinx Vitis AI stack

• Integrated with ML frameworks

• Model optimizers:
• Quantization

• Pruning

• Model compiler into DPU instructions

• DPU logic components to manual instantiations 

• Ready to use bitfiles with DPU instances

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Card-DPUCAHX8H



Decomposed model

• Model optimizations:
• Iterative, offline processes: apply change -> retrain

• Quantization
• Model size reduction (in MB) while maintaining performance
• Limited data types selection based on DPU configuration

• E.g. INT8: 4x size reduction, 0.1% accuracy drop (ResNet 50)

• Pruning
• Model nodes removal while maintaining performance

• E.g. ResNet50, 46% less parameters, 1% accuracy drop

• E.g. Custom CNN for FMNIST: 90% less parameters, 2% accuracy drop

G. Kozioł – UJ Master thesis, under development

Xilinx.com



Decomposed model

• Performance evaluation
• ResNet50 model with additional layers

• 2 DPU bitstreams evaluated: throughput and latency optimized

G. Kozioł – UJ Master thesis, under development

GPU: Nvidia RTX 2080

Throughput optimised:

Large data batches mixed
and processed by all DPU
instances

Latency optimised:

Single inference employs
all resources, long
inference switching time



Why inference only?

• FPGAs work great when:

• Operations can be pipelined

• Required memory can fit into embedded resources

• Memory access is sequential and continuous

• Input data comes from built in trasceivers

• Arithmetics are simple (+, -, *)

• GPUs have superior performance in NN training



Summary

• FPGAs have unique set of features for NN
• Real-time data processing
• Ultra-low latency or power applications
• Sensor Fusion  
• Adaptation in time – reprogramability

• Growing set of high-level development tools
• Ready to use hardware platforms
• Accelerated libraries
• System builders
• Python integration



Is it hard to use FPGAs?



HPC Example

• Cygnus – Center for Computational Sciences, Tsukuba, Japan

Xilinx.com

T. Boku, „Japanese Supercomputer
development and hybrid accelerated supercomputing”

D. Roche, „Juelich Supercomputing Centre”



What is next to come

• 7nm Versal Architecture

General CLB resources:
• 4x larger blocks (32 LUTs)
• Less routing
• Higher frequencies

Interconnected vector SIMD:
• 1GHz frequency
• 512b floating point vector
• Local/shared memory
• Streamlined designs

High bandwidth interconnect

Xilinx.com




