fpgge.

OIE

www.fpgafai

Neural Networks inference
on FPGA-based platforms

Grzegorz Korcyl

Department of Information Technologies
Jagiellonian University, Cracow

15 September 2022
WMLQ 2022

CPU

VS

GPU vs FPGA

()
>
Data l o
< S
<)
é Data 2 s
O Instr 2 > Dl 2
Instr 3 ©
Y
Data 3 3
G
Instr 4 Data N
Data 4
o CPU o GPU o FPGA
o Single Instruction Single o Single Instruction Flexible architecture

Data per core

Fixed instruction set
Multiple cores

High clock freq.

Operating system

Multiple Data Massive parallelism

Fixed instruction set Streamlined processing

High clock freg. Low clock freg.

Memory access Instant memory access

Accelerates CPU Standalone platforms

Different approach

Instead of adapting the program to a given
architecture

Let’s design the architecture that performs the task
in the most efficient way

g

What are FPGASs

* Field Programmable Gate Arrays

* Devices for processing digital data streams
* Adaptable computing resources
* Reconfigurable at any time

Arrays of Configurable Logic Blocks Basic Configurable Logic Block

108 108 108 108

o]
@

A
OB OB 108 1) 108 ey Reconfigurable
Ci 1/Re P
..o.n.‘:c...c.sf:. c:,l;, Building Block
8| |cs B fa} B as | [Gin 2-0ut
5 £ 43} Look-up-table 2 2
LT
= - [x
© | | ,ececccccccces ~
] |3 :
6-in 2-out
2 § £ Lyt took-uptable {2 2] © 512 c &
e LuT v 3 I_ 8 z
@ @ -1} E 3 ° t
£ = Q)
8| |cs 8 ol B 8 £ £ £ o I 2
ol [<3 % H
- 6-in 2-out E. © 3 o
g 5 £ 1t Look-up-table 12 Ly, £ Eé‘.@-’ a &
- =] -
3| | s fol} cls clB 8 £ Lut o 3 £
e -------------- g
Sl |
5 § Ginzout i 5
Bl | ce B ciB cB 3 B e el 7‘“@"
:

-

www.electronicdesign.com

Architecture

a) Lookup Table (LUT) b)

Configuration Bit0 0 0 0
Configuration Bit1 0 1 0

out 1 0 0
Configuration Bit2]] 1
Configuration Bit3 . .

5 out=in[1] &in[0]
in

R. Kastner, J. Matai, S. Neuendorffer ,Parallel Programming for FPGAs”

Bk,

What are FPGAs

Processing System

Application Processing Unit

* Much more than just CLBs:

* Memory blocks ansrtons e W i e[| o || e
. . Floating Point Unit 4/3,

ECC Support UsB 3.0

e DSP block (hard multipliers) T T sl
I-CaF::he D-Cache || Management Processor | Processors SATA3.0

..) . e |00 .

* Multigigabit transceivers e BN T entey i ettt Pele G2
m CCVSMMU | 1MB L2 Cache/ECC 64KB L2 Cache Em

* Clock managers
* Hard protocols and codecs

Vector Floating Configuration Gigabit Ethernet
Point Unit AES Decryption CAN
[} T S o0 Memory Protection Au(hmtizglbx; 12¢
Ext. memory controllers e W isnal] [o s (1
, Resets,
128K TCM | 32K8 1-Cache | 3248 D-Cache Clocking e e?
* ADC / DAC withECC || withecC | withECe TrustZone Sivbon and Debug SPl
Management Quad SPI KOR
Voltage/Temp NAND
Monitor SD/eMMC

* Complete System-On-Chip: e : -
Storage and Signal Processing High Speed Connectivity Video Codec

* PowerPC/ARM e Pupose
* Ext. Memory controllers

viemary
* Multiple 1/O controllers

* Fast interconnect Xilinx Zyng MPSoC - infrastructure Xinxcom

Natural parallelism and streamlined processing

Data stream 1

Data stream 2

Data stream 3

Data stream 4

ilnstr 11 Instr 12 I
Instr 21 Instr 22 m

|

f -
g

Neural Networks

* Massive parallelization

* Accelerated computing
time

* Deterministic Latency

e Exact time of the result
in a processing pipeline

* Optimized data types
e Better FLOPs/Watt ratio

Bk,

Flexible data types

CLIn [

RESULT_OUT reg[3:0]

plusOp_i D
10(3:0]
DATAL_IN[3:0] 013:0]
DATAZ_IN[3:0] 1113:0) RTL_REG

RTL_ADD

C

[

iedaeikii

i D o
. i D =
.;.“D:' &
= o
H -
7 -

Primitive Statistics
Primitive type Count

FLOP_LATCH g
LuT g
CARRY 2
10 25
CLK 1

Primitive Statistics

Primitive type Count
FLOP_LATCH 124

LUT 124
CARRY 31
10 373
CLK 1

Primitive Statistics

Primitive type Count
FLOP_LATCH 1024

LUT 1024
CARRY 258
10 3073

CLK 1

4
“Hdie

Device selection

Low-end devices -> cheap, small form-factor, ultra-low power
3.7k LUT, 5 BRAM, 10 DSP

High-end devices -> ultra expensive, large form-factor, low power
 4M LUT, 3.7k BRAM + 1.2k URAM, 12.2k DSP, 128 MGT (32 Gbps)

Everything in between

Edge
* Ready to use, standalone platforms, large selection of add-on cards

Cloud
* Accelerator cards, host — PCle card

g

How to use these resources?

-- RTL geverated by Vivado(TM) HLS - High-Level Sywthesis from ©, C+ and SystemC
Verston: 2818 3

B Copyng}lt (C) 1986-2008 Xitink, Inc, ALl Rights Reserved.

i library IEEE;
' use IEEE.std logic 1164.a11;
10) use IEEE.numeric_std.all;

O @ e
[() R, |

1200 entity adder is

» Hardware Description Languages: Verilog/VHDL
e Control over each flip-flop and clock cycle CTT o e

: ap_do
16 ap_idle ; OUT STD_LOGIC;

17 ap_ready : OUT STD_LOGIC;
° M . . . 18) datal : IN STD_LOGIC VECTOR (31 downto 0);
ITTiIcult, time consumin evelopment an 1o ditez | IN STOLOGICVECTOR (a1 covnco o,
? 20 | ap_return : OUT STD_LOGIC ¥ECTOR (31 downta @) };
. 21 a end:
22
debugging cycles

24 architecture behav of adder is
25 attribute CORE_GEMERATION INFO : STRING;
26 | attribute CORE_GEMERATION INFO of behaw : architecture is
27 | “adder,hls_ip_2018_3,{HLS_INPUT_TYPE=cxx,HLS_TNPUT_FLOAT=0,HLS_INPUT_FIXED=0,HLS_IHPI
28 | constant ap_const_logic 17 : STD_LOGIC := '1';
29 constant ap_const_logic_@ : STD_LOGIC := 'Q';:
30 constant ap_const_boolean_1 : BOOLEAN := true:
31

. 32 !
33

* High-level tools

35
36

ap_doni tart;

* C++to HDL converters (High-Level Synthesis) = =i

| start;
ap_return == std_logic_vector{unsigned{data2) + unsigned{datal}};

* Loss of performance, gain in solution-to-market BT

* Accelerated libraries .= int adder(int datal, int data2) {
. return datal + dataz?:
* Complete system builders

J

o
—t

 However, HDL always in the end

FPGA
Compiler

Neural Networks on FPGAS

* Full model * Decomposed model
* Pros: * Pros:
* Fits entire model into * Any model can be
programmable resources compiled
* No supervisor * High-level model
* Direct processing optimizers

* Lowest, fixed latency
* Any data type
* No ext. memory req.

* Moderate resource
consumption

* Subset of data types
support

e Cons:

* High resource
consumption

* Limited memory
capacity

* Limited types of layers

* Cons:
* Requires supervisor
* Requires ext. memory

* Subset of data types
support

Full model

* Decomposition of the entire model into series of matrix operations

* Construction of pipelined sequence of operation blocks (layers)
e Highest throughput, lowest latency

* Implementation of operations on LUT and DSP, weights stored in FF
* Very high resource consumption, resources limits

Full model

* Integration of HDL logic generation with Python
* NN model converted to C++ code

* High Level Synthesis used to convert C++ into HDL
e Full control over data types

 Moderate control over resource consumption vs latency

import his4ml

en
PyTorch

config= his4ml.utils.fetch_example_model('KERAS_3layer.json') -
hls_model = hls4ml.converters.keras_to_hls(config) N A
. ed
his_model.build() edd) —| s
conversion
Usual ML
software workflow

J. Duarte et al., “Fast inference of deep neural bvthor ot Bitstream
networks in FPGAs for particle physics”, JINST 13 Y
P07027 (2018), arXiv:1804.06913.

doge

Full model

e Application in hardware trigger for CMS experiment in CERN
* Trigger: fast feature extraction for decision making
* Hardware level: sustain incoming 40 MHz collision rate, true real-time processing

Xilinx FPGA

* CPU/GPU not viable: fast but not real-time

.) .
FPGA over ASIC: reprogrammability (-\ - e .
. . . Q Terabytes/ Sec sz;]:,mq ioreics
Artificial Intelligence Accelerates Dark Matter Search cMS :
Sensor
100ns

Integrating Inference Acceleration with Sensor Pre-processing in Xilinx FPGAs

. . Figure 2: Compared to alternative devices such as GPUs and ASICs, FPGAs are the only viable choice for the event trigger processing because
Delivers Performance Unachievable by GPUs and CPUs J P Y gger p! 9

they provide extremely low latency. While the large numerical processing capability of GPUs is attractive, these technologies are optimized for

high throughput, not low latency.
1GHz->1ns

hisdml 3-layer pruned, Kintex Ultrascale Le3 hlsaml 3-layer pruned, Kintex Ultrascale
501 —=— Reuse Factor = 1 —=— Reuse Factor =1
~=— Reuse Factor = 2 67 —=— Reuse Factor =2
- Max DSP
—s— Reuse Factor = 3 L—#— ReuseFactor =3 cc c e e m e m = = E——
—=— Reuse Factor = 4 —a— Reuse Factor = 4
401 —s— Reuse Factor = 5 51| —=— Reuse Factor = 5
—=— Reuse Factor = 6 —=— Reuse Factor = 6
4
230
< &
& fa]
3 31
20 4
24
10 4
114
0 T T T T -] T T T r r
<8,6> <16,6> <24,6> <32,6> <40,6> <8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision Fixed-point precisi

https://www.xiIinx.com/puﬁﬁcations/powered-by-xiIinx/cerncasestudy-finaI.pdf

1
i

Decomposed model

 Model decomposition into a set of sequential
instructions dedicated processor

* Processor — Deep Learning Processing Unit (DPU)
* Configurable entity to instantiate in programmable resources
* Instruction set optimized for NN inference
* Instructions and weights stored in external memory

Requires supervisor!
Breaks true real-time chain

[e | [e |- /e || P |

User XDMA/
[
| Local Memory | Logic | | Shell

Host processor:
* CPU on PCle based platforms
 ARM cores in SoC platforms

nnnnnnnnnnnnnnnn

H i

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Ca rd-DPUCAHX8H

Decomposed model

User Application

« AMD/Xilinx Vitis Al stack o pr—

1F TensorFlow

Vitis Al Models Model Zoo Custom Models

Integrated with ML frameworks

Al Compiler | Al Quantizer | Al Optimizer

* Model optimizers: Development ki A ot L
* Quantization xilinx Runtime lirary (XRT)
* Pruning overay
[] _—

Model compiler into DPU instructions
DPU logic components to manual instantiations
Ready to use bitfiles with DPU instances

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Card-DPUCAHX8H

:
s

Decomposed model

* Model optimizations:
* lterative, offline processes: apply change -> retrain

k3

Xilinx.com

* Quantization
* Model size reduction (in MB) while maintaining performance
* Limited data types selection based on DPU configuration
* E.g. INT8: 4x size reduction, 0.1% accuracy drop (ResNet 50)
* Pruning
* Model nodes removal while maintaining performance

* E.g. ResNet50, 46% less parameters, 1% accuracy drop
e E.g. Custom CNN for FMNIST: 90% less parameters, 2% accuracy drop

G. Koziot — UJ Master thesis, under development

g

Decomposed model

* Performance evaluation
 ResNet50 model with additional layers
* 2 DPU bitstreams evaluated: throughput and latency optimized

Average inference time Average inference time
—— PEnginel (batch 4) 43
. . "0 | et PEngine2 (batch 5) . .
Throughput optimised: ’ ’ 40 Latency optimised:
40 35
Large data batches mixed i T30 Single inference employs
and processed by all DPU £ E2s all resources, long
instances 2 20 inference switching time
15
10 10
10 15 2.0 25 30 35 4.0 10 15 20 25 30 35 40
Parameters le7 Parameters le7
DPU Throughput comparison Throughput comparison
—— Throughput optimized — DPU
20000 1 — Latency optimized 20000 - — GPU GPU NV|d|a RTX 2080
17500 4
= 15000 A = 15000 A
- £
5 5 12500
S 10000 4 s
3 3 10000
£ £
7500 4
5000 4
5000 4
0 1 T T T T T T T
10 15 20 25 30 35 40 10 15 2.0 2.5 3.0 35 4.0

G. Koziot — UJ Master thesis, under development
Parameters le7 Parameters le7

£
Holis

Why inference only?

* FPGAs work great when:

* Operations can be pipelined

* Required memory can fit into embedded resources
 Memory access is sequential and continuous

Input data comes from built in trasceivers
Arithmetics are simple (+, -, *)

* GPUs have superior performance in NN training

£
Holis

Summary

* FPGAs have unique set of features for NN
* Real-time data processing
* Ultra-low latency or power applications
* Sensor Fusion
* Adaptation in time — reprogramability

* Growing set of high-level development tools
e Ready to use hardware platforms
* Accelerated libraries
* System builders
* Python integration

g,

Is it hard to use FPGAs?

import pynq
devices = pynq.Device.devices
for 1 in range(len{devices)):
print("{}) {}".format(i, devices[i].name))

ol = pynq.0Overlay("binary container 1.xclbin")

kernel = ol.function low 1

inl = pyng.allocate((1024,), 'ud4', target=ol.HBM&)
in2 = pyng.allocate((1024,), 'ud4’', target=ol.HBM1)
in3 = pyng.allocate((1024,), 'ud4', target=o0l.HBM2)
out = pyng.allocate((1024,), 'ud4', target=o0l.HBM3)

inl.sync to device()
in2.sync to device()
in3.sync to device()
kernel.call(inl, in2, in3, out, 1024)

out.sync from device()

ol.free()

e

HPC Example

e Cygnus — Center for ComputatlonaISuences Tsukuba, Japan

D. Roche, ,Juelich Supercomgutlng Centre”

¥) JULICH
SINGLE Network switch Network switch »
100Gbps x2, ", i z
P S (400akps 2) Research Fields of Current National Projects
Leadership-Class General-Purpose
System Supercomputer

Granting periods
05/2014 — 04/2015
11/2013 - 10/2014

~ 100 Projects \ ~ 160 Projects

Inter-FPGA Inter-FPGA B Astrophysics W Earth & Environment [Elementary Particle Physics
direct network direct network B Biophysics B Plasma Physics Computer Science
(100Gbps x4) (100Gbps x4) O Chemistry B Soft Matter @ Condensed Matter

B Fluid Dynamics B Material Science

T. Boku, ,Japanese Supercomputer
development and hybrid accelerated supercomputing”

FGG
PIPEP
EHE® L
A

Xilinx.com

doge

What is next to come

e 7nm Versal Architecture

General CLB resources:

4x larger blocks (32 LUTs)

Less routing
Higher frequencies

Dual-Core
Cortex™-A72
Application
Processor

Arm
Dual-Core
Cortex-R5
Real-Time
Processor

Processing System

PCIe® &
cc:|x HBM
(WDMA!

Platform
Management

Controller

N

Adaptable Engines

Adaptable
Hardware

Block RAM

UltraRAM
Accelerator RAM

Versal

U

Network On Chip (NoC)
Mutirate | 600G

Lzs

Ethemet Cores

Interconnected vector SIMD:
* 1GHz frequency

* 512b floating point vector
* Local/shared memory

e Streamlined designs

Intelligent Engines

High bandwidth interconnect

DSP
Engines

s

Direc
RF

| GPIO

Xilinx.com

WFSDE_03_(9C818

Figure 3: Al Engine Array

Each Al Engine tile includes vector processors for both fixed and floating-point operations, a scalar
processor, dedicated program and data memory, dedicated AX| data movement channels, and
support for DMA and locks. Al Engines are a single instruction multiple data (SIMD); and very long
instruction word (VLIW), providing up to 6-way instruction parallelism, including two/three scalar
operations, two vector load and one write operation, and one fixed or floating-point vector
operation, every clock cycle.

Optimized for real-time DSP and Al/ML computation, the Al Engine array provides deterministic
timing through a combination of dedicated data and instruction memaories, DMA, locks, and

WP506 (v1.1) July 10, 2020 www.xilinx.com 4

