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CPU      vs      GPU      vs      FPGA
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 GPU

 Single Instruction
Multiple Data

 Fixed instruction set

 High clock freq.

 Memory access

 Accelerates CPU

 FPGA

 Flexible architecture

 Massive parallelism

 Streamlined processing

 Low clock freq.

 Instant memory access

 Standalone platforms

 CPU

 Single Instruction Single 
Data per core

 Fixed instruction set

 Multiple cores

 High clock freq.

 Operating system



Instead of adapting the program to a given 
architecture

Let’s design the architecture that performs the task 
in the most efficient way

Different approach



What are FPGAs

• Field Programmable Gate Arrays
• Devices for processing digital data streams

• Adaptable computing resources

• Reconfigurable at any time

www.electronicdesign.com

Arrays of Configurable Logic Blocks Basic Configurable Logic Block

R. Kastner, J. Matai, S. Neuendorffer „Parallel Programming for FPGAs”



What are FPGAs

• Much more than just CLBs:
• Memory blocks
• DSP block (hard multipliers)
• Multigigabit transceivers
• Clock managers
• Hard protocols and codecs
• Ext. memory controllers
• ADC/DAC

• Complete System-On-Chip:
• PowerPC/ARM
• Ext. Memory controllers
• Multiple I/O controllers
• Fast interconnect

Xilinx.comXilinx Zynq MPSoC - infrastructure



Natural parallelism and streamlined processing
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Neural Networks

• Massive parallelization
• Accelerated computing

time

• Deterministic Latency
• Exact time of the result

in a processing pipeline

• Optimized data types
• Better FLOPs/Watt ratio



Flexible data types



Device selection

• Low-end devices -> cheap, small form-factor, ultra-low power
• 3.7k LUT, 5 BRAM, 10 DSP

• High-end devices -> ultra expensive, large form-factor, low power
• 4M LUT, 3.7k BRAM + 1.2k URAM, 12.2k DSP, 128 MGT (32 Gbps)

• Everything in between

• Edge
• Ready to use, standalone platforms, large selection of add-on cards

• Cloud
• Accelerator cards, host – PCIe card



How to use these resources?

• Hardware Description Languages: Verilog/VHDL
• Control over each flip-flop and clock cycle

• Difficult, time consuming development and 
debugging cycles

• High-level tools
• C++ to HDL converters (High-Level Synthesis)

• Loss of performance, gain in solution-to-market

• Accelerated libraries

• Complete system builders

• However, HDL always in the end HDL

FPGA 
Compiler

Block design

IPsC/C++

HLS



Neural Networks on FPGAs

• Full model
• Pros:

• Fits entire model into 
programmable resources

• No supervisor
• Direct processing
• Lowest, fixed latency
• Any data type
• No ext. memory req.

• Cons:
• High resource 

consumption
• Limited memory 

capacity
• Limited types of layers

• Decomposed model
• Pros:

• Any model can be 
compiled

• High-level model 
optimizers

• Moderate resource 
consumption

• Subset of data types 
support

• Cons:
• Requires supervisor
• Requires ext. memory 
• Subset of data types 

support



Full model

• Decomposition of the entire model into series of matrix operations

• Construction of pipelined sequence of operation blocks (layers)
• Highest throughput, lowest latency

• Implementation of operations on LUT and DSP, weights stored in FF
• Very high resource consumption, resources limits



Full model

• Integration of HDL logic generation with Python
• NN model converted to C++ code

• High Level Synthesis used to convert C++ into HDL

• Full control over data types

• Moderate control over resource consumption vs latency

Python C++ Bitstream
J. Duarte et al., “Fast inference of deep neural
networks in FPGAs for particle physics”, JINST 13 
P07027 (2018), arXiv:1804.06913.

import hls4ml

config= hls4ml.utils.fetch_example_model('KERAS_3layer.json') 

hls_model = hls4ml.converters.keras_to_hls(config)

hls_model.build()



Full model

• Application in hardware trigger for CMS experiment in CERN
• Trigger: fast feature extraction for decision making
• Hardware level: sustain incoming 40 MHz collision rate, true real-time processing

• CPU/GPU not viable: fast but not real-time
• FPGA over ASIC: reprogrammability

1GHz -> 1 ns

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf



Decomposed model

• Model decomposition into a set of sequential 
instructions dedicated processor

• Processor – Deep Learning Processing Unit (DPU)
• Configurable entity to instantiate in programmable resources
• Instruction set optimized for NN inference
• Instructions and weights stored in external memory

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Card-DPUCAHX8H

Requires supervisor!
Breaks true real-time chain

Host processor:
• CPU on PCIe based platforms
• ARM cores in SoC platforms



Decomposed model

• AMD/Xilinx Vitis AI stack

• Integrated with ML frameworks

• Model optimizers:
• Quantization

• Pruning

• Model compiler into DPU instructions

• DPU logic components to manual instantiations 

• Ready to use bitfiles with DPU instances

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Alveo-U50LV/U55C-Card-DPUCAHX8H



Decomposed model

• Model optimizations:
• Iterative, offline processes: apply change -> retrain

• Quantization
• Model size reduction (in MB) while maintaining performance
• Limited data types selection based on DPU configuration

• E.g. INT8: 4x size reduction, 0.1% accuracy drop (ResNet 50)

• Pruning
• Model nodes removal while maintaining performance

• E.g. ResNet50, 46% less parameters, 1% accuracy drop

• E.g. Custom CNN for FMNIST: 90% less parameters, 2% accuracy drop

G. Kozioł – UJ Master thesis, under development

Xilinx.com



Decomposed model

• Performance evaluation
• ResNet50 model with additional layers

• 2 DPU bitstreams evaluated: throughput and latency optimized

G. Kozioł – UJ Master thesis, under development

GPU: Nvidia RTX 2080

Throughput optimised:

Large data batches mixed
and processed by all DPU
instances

Latency optimised:

Single inference employs
all resources, long
inference switching time



Why inference only?

• FPGAs work great when:

• Operations can be pipelined

• Required memory can fit into embedded resources

• Memory access is sequential and continuous

• Input data comes from built in trasceivers

• Arithmetics are simple (+, -, *)

• GPUs have superior performance in NN training



Summary

• FPGAs have unique set of features for NN
• Real-time data processing
• Ultra-low latency or power applications
• Sensor Fusion  
• Adaptation in time – reprogramability

• Growing set of high-level development tools
• Ready to use hardware platforms
• Accelerated libraries
• System builders
• Python integration



Is it hard to use FPGAs?



HPC Example

• Cygnus – Center for Computational Sciences, Tsukuba, Japan

Xilinx.com

T. Boku, „Japanese Supercomputer
development and hybrid accelerated supercomputing”

D. Roche, „Juelich Supercomputing Centre”



What is next to come

• 7nm Versal Architecture

General CLB resources:
• 4x larger blocks (32 LUTs)
• Less routing
• Higher frequencies

Interconnected vector SIMD:
• 1GHz frequency
• 512b floating point vector
• Local/shared memory
• Streamlined designs

High bandwidth interconnect

Xilinx.com




